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Abstract

This paper examines a link between an individual’s strategic thinking in beauty

contest games and (possibly non-rational) decision-making patterns in a non-strategic

setting. Experimental evidence shows that subjects’ strategic behavior, which used

to be understood as a result of (possibly limited) cognitive iterations, is closely re-

lated to non-strategic decision-making patterns. We claim that such a relationship

partially explains conflicts in previous reports on the strategic behaviors observed

in the laboratory. The relationship requires attention because the assumption that

individuals are rational in the decision-theoretic sense can create a sizable misinter-

pretation of strategic behavior.

1 Introduction

A growing number of studies in economics and political science consider bounded

rationality both in a non-strategic environment,1 where a single player makes a decision

under an uncertain state and in a strategic environment, where she responds to the

other agents’ unknown intentions and behavior. When making a decision in the non-

strategic environment, individuals are often cognitively limited: They may not recognize

or understand all the aspects that affect their payoffs, or they may lack the cognitive
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ability to draw an ideal decision as much as they needed. Observations from the strategic

environment also seem to be inconsistent with the theoretical predictions attained under

the assumption of full rationality, not only because their rationality is bounded, but also

because their belief about other individuals’ bounded rationality varies.

The primary goal of this paper is to examine how individuals’ non-strategic—and

possibly non-rational—decision-making patterns over probabilistic events are related

to their strategic ones. To analyze strategic observations, the main body of the litera-

ture has implicitly assumed that “individuals are rational in the decision-theoretic sense

of choosing strategies that are best responses to consistent beliefs" (Crawford, 2016),

which hereinafter we call decision-theoretic rationality. However, experimental work

shows that when subjects are asked to make repetitive decisions under uncertainty, a

significant number (more than 40%) of subjects do not make decisions that maximize

their expected payoff; instead, they match their decision frequencies to the probability

of events, which is called probability matching (Rubinstein, 2002; Neimark and Shuford,

1959). For example, when people are asked to play ten rounds of Matching Pennies (MP)

games, and they are informed that in each game a coin will be tossed independently and

the coin will land heads with a 70% chance, some of them choose Heads for seven out of

the ten rounds and Tails for three out of the ten, in order to match their choice frequen-

cies with the probability of events. To maximize the expected payoff, they should have

chosen Heads for all the rounds. We introduce a broader notion of probability match-

ing because other (seemingly non-rational) decision-making patterns could exist. For

example, even if they choose Heads for all ten rounds in one set, we cannot rule out the

possibility that they will choose Heads for all the rounds in seven out of ten repetitive

sets and choose Tails for all the rounds in three of the other ten sets. Alternatively, even

if they know that choosing Heads all the time would maximize the expected payoff, they

still might want to consistently choose an outside option when one is available, believing

that this would serve as a hedge. We call this broad notion of an individual’s tendency in

repetitive decision makings a mixing propensity because this tendency results in mixed

choices in the same environment.2

We claim that when the mixing propensity of an individual is not considered, it is

challenging to map the individual’s strategic behaviors to her underlying belief. The

2Many studies provide models of preferences for randomization. Dwenger et al. (2012) provide a theory
of responsibility aversion, which implies a demand for randomization. Levitt (2016) finds that randomiza-
tion (coin toss) on major life decisions positively affects happiness, which might also reflect the responsi-
bility aversion. Machina (1985) and Cerreia-Vioglio et al. (2018) consider convex preferences to account
for the affinity towards randomization among equally preferred options. Although investigating why some
people have such a preference for randomizing their choices is worthwhile, we want to clarify here that
the primary purpose of this study is not to rationalize the mixing propensity. Rather, we take their choice
patterns as a given and investigate further what we can find.
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beauty contest game or its modified versions have been widely used to estimate indi-

viduals’ cognitive levels and their underlying beliefs about the population. One typical

beauty contest game proceeds as follows: “Each of those who participate in this game si-

multaneously submits a number between 0 and 100, and a huge prize goes to the person

who submits the closest number that is two-thirds of the average of all the submitted

numbers." The unique Nash equilibrium strategy is for everyone to submit 0, but this

requires sufficiently many, if not infinite, steps of iterated dominance. If everyone ran-

domly chooses one number between 0 and 100, the average of the submitted number

would be 50; that is, the winner would be someone who submits a number close to 33.

If everyone who follows the same logic submits 33, then 22 would be the winning num-

ber. If everyone picks 22, then 15 would be the winning number, and so on. That is, to

reach the equilibrium strategy, one must assume that everyone could follow these logical

iterations as many times as is needed, which is not always accurate because an indi-

vidual’s cognitive ability is often bounded. We build upon two leading theories that for-

malize bounded rationality in strategic thinking: the Level-k (Lk) model (Costa-Gomes

et al., 2001; Costa-Gomes and Crawford, 2006) and the cognitive hierarchy (CH) model

(Camerer et al., 2004). Both models assume that individuals use only finite (=k) steps of

iterated dominance, and such k varies by individual. One notable difference is that the

Lk model assumes that individuals believe that others’ cognition levels are homogeneous

at Lk-1, while the CH model assumes that individuals believe the cognition levels are

distributed over L0 to Lk-1, where the population distribution is assumed to be stable.

To analyze experimental observations, previous studies implicitly share an assumption

that every subject is equipped with decision-theoretic rationality. In other words, the

main body of the literature has assumed that no subject has any sort of mixing propen-

sity, which may create sizable misinterpretation: An individual who has a certain type

of mixing propensity may show homogeneous choice patterns even when she has a het-

erogeneous belief, while an individual who has another mixing propensity may exhibit

heterogeneous choice patterns that fully reflect her heterogeneous belief, even when the

best response to the belief is a probabilistic mixture of many choices. Questions that

naturally followed include whether the failure to consider mixing propensity in previous

studies has compromised their elicitation of the structure of beliefs, and if so, how severe

it is.

To address our questions, we conducted two sets of within-subjects laboratory exper-

iments: An ordinary decision-making (ODM) experiment that uses a modified matching

pennies game, and a strategic decision-making (SDM) experiment that uses a modified

beauty contest game. In a nutshell, from the ODM experiment, we identify the mixing

propensity of individuals and categorize it into one of four types. Within such a mixing
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propensity type, observations from the SDM experiment can be analyzed more clearly to

better describe the belief distribution.

Our observations are summarized as follows: First, in the ODM experiment, about

half of the subjects were classified as a Rational Optimizer (RO), each of whom chooses

rational decisions consistently; a third of the subjects were classified as a Probability

Matcher (PM), each of whom exhibits a probability matching propensity; and the rest

of them were as a Hedging Matcher (HM), each of whom consistently prefers a hedging

option whose payoff is adjusted downward by their own risk preferences. There was no

Uniform Matcher (UM), or one who matches the frequencies of the choice bundles to

the probability of events. Second, the overall cognitive iteration level of the PM-type

subject was lower than that of the RO-type subject, and the PM-type made more varied

strategic decisions than the RO-type. Third, the HM-type subjects, similar to the PM-

type subjects, carried over a smaller number of cognitive iterations to make a strategic

decision than did the RO-type ones, but their decisions were less varied than those of

PM-type subjects. Together these observations suggest that in the previous studies, the

estimated population distribution of cognitive ability to carry over strategic thinking was

distorted downward because a substantial fraction of population (the PM-type and the

HM-type subjects) systematically deviate from decision-theoretic rationality. We also

claim the PM-type subjects can represent their entire underlying belief structure more

accurately, while the cognition level of HM-type and RO-type subjects is likely to be

underestimated.

The rest of this paper is organized as follows. In the following subsection, we re-

view related studies. Section 2 describes details of experimental design. The statistical

method for inference is described in Section 3. Section 4 shows the results of the experi-

ment and discusses its implications. Section 5 concludes.

1.1 Related Literature

This study is grounded in empirical and theoretical findings of bounded rationality in

strategic behavior. We mainly focus on two leading behavioral models: the Level-k model

developed by Costa-Gomes and Crawford (2006) and the Cognitive Hierarchy model de-

veloped by Camerer et al. (2004). Both models share two assumptions: (1) individuals

are rational in the decision-theoretic respect that they choose strategies that are the best

responses to consistent beliefs; and (2) individuals play strategies of a finite level of iter-

ated dominance. The models differ in their assumptions about subjects’ beliefs regarding

the strategic behavior of other players. The Level-k (Lk) model assumes that individu-

als uniformly believe that all their opponents play the same level of iterated dominant

strategy. For example, the L2 subject assumes that all his/her opponents play a one-time
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iterated dominant (or L1) strategy. From that assumption, Lk subjects are supposed to

play a certain strategy that is the best response to their uniform beliefs. In Costa-Gomes

and Crawford (2006), about 55% of subjects show a level of play that indicates adoption

of the Level-k model. On the other hand, some subjects explicitly mix two or more differ-

ent strategies, each of which represents a different level of iterated dominance. Such a

systematic pattern does not coincide with the assumption of uniform belief. Costa-Gomes

and Crawford (2006) claim such a mixing propensity may be the results of learning. That

is, even among individuals who start from the initial uniform belief, the experience leads

subjects to shift to the higher level of iterated dominance while retaining the uniform

belief structure. However, for some subjects, such mixing occurs irrespective of the time

horizon. These observations demand an alternative model that explains this behavioral

pattern. The Cognitive Hierarchy (CH) model allows individuals to have a heteroge-

neous belief structure. For example, the L2 subject assumes that his or her opponent

plays both the L1 strategy and the L0 strategy; the latter is a uniform random strategy.

Depending on his or her belief regarding the proportion of those who use the two differ-

ent strategies, each subject may find a different best response. To explicitly estimate the

structure of belief, Camerer et al. (2004) use observations from previous studies as well

as their own experimental observations. However, even though their model allows for a

heterogeneous belief structure, Camerer et al. (2004) cannot fully explain the observa-

tions of mixed choices. That is, if a subject has a heterogeneous belief about the other

players, consistently choosing the interim choice which is the best response to the het-

erogeneous belief as a whole can be strictly better than mixing several choices, each of

these respectively corresponds to the best response to a part of the heterogeneous belief.

In the sense that we try to understand higher order rationality better, our goal is con-

sistent with that of Kneeland (2015), who proposes a more explicit design of experiments

to identify the higher order rationality. Rather than adopting Kneeland’s ring games of

many (more than three) players, we stick to the two-person guessing games. Because our

primary objective is to find relationships between the decision-making patterns in non-

strategic environments (a player vs. random events) and choices in strategic environ-

ments (a player vs. another player), we design the two experiments to be as structurally

similar to one another as possible. The 11-20 game introduced by Arad and Rubinstein

(2012) is also an excellent tool for eliciting higher order rationality. We did not conduct

the 11-20 game because it might not capture the behavior of HM-type players who prefer

suboptimal but safer options.

We posit that individuals may show different responses to the same belief, and this

difference in decision-theoretic rationality may lead to the apparent puzzle that mixes

different strategies. Examples abound. In Rubinstein (2002), about half of the under-
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graduate subjects matched their frequency of choices to the probability of events for

repetitive decision-making tasks. Thaler (2016) reports a similar result among MBA

students at a top university. Though the contexts varied, the fundamental question

that the authors asked subjects to perform was the independent repetition of the MP

game described above.3 Likewise, many studies in the psychology literature find a sig-

nificant propensity for mixing different strategies. Neimark and Shuford (1959) and

Vulkan (2000) also provide lab-experiment observations that support the existence of

probability matching behavior. If we regard this mixing propensity as preferences for

the randomization of choices, the experimental evidence expands. Agranov and Ortoleva

(2017) found that a large majority of experiment participants exhibit stochastic choice

when they are asked to answer the same questions several times in a row. Dwenger

et al. (2012) reported that university applications in Germany exhibit a choice pattern

that is consistent with a preference for randomness. If similar probability matching be-

havior can also occur in strategic situations, then the underlying belief structure about

the other players’ cognition levels could be better revealed by the mixing strategies of

different levels.

Although probability matching has been well documented in the literature, few exper-

imental studies have explicitly considered these behavioral patterns in the optimization

process for identifying underlying belief structure in the strategic decision-making en-

vironment. Georganas et al. (2015) examined whether individuals show similar levels

of iterated dominance in different forms of the game. Georganas et al. (2015) had sev-

eral individuals play different games: four separate non-strategic tests and a strategic

decision-making session. In the strategic decision-making session, subjects played the

‘undercutting game’ and the ‘beauty-contest game’ for four and five times, respectively.

While the undercutting game only allowed discrete choices, the beauty contest allowed

some interim choices that do not represent any level of iterated dominance. Even in the

two games that share a similar structure (requiring players to exploit an iterated dom-

inant strategy), individuals showed almost no correlation between the levels of iterated

dominance. Moreover, there was no significant connection between an individual’s traits,

such as IQ, and his or her level of iterated dominance. Georganas et al. (2015) attempted

to find consistency in the strategic process in different environments but did not examine

3Rubinstein (2002) performed the “catch the messenger" game in which a detective’s task is to deter-
mine the location of a video camera each day and identify as many unknown messengers as possible while
knowing the probability of catching the messenger at each location. The video camera should have been
installed all the time at the location where the probability is the highest, but only a small portion of stu-
dents always played the stochastic dominant action. Thaler (2016) asked MBA students to make a streak
of 5 matching-pennies choices. Each choice was either Heads or Tails, and a fair coin was tossed five times
after they made choices. The payoff of matching at Tails was 1.5 times higher. They should have chosen
Tails all the time, which is the stochastically dominant action, but the most common observation was three
Tails and two Heads, matching the ratio of the payoffs.
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the process regarding individual optimization patterns.

2 Experimental Design

We use a within-subject design. The same subjects participated in two different ex-

periments: In the ordinary decision-making (ODM) experiment, subjects made a streak

of decisions in which payoffs depend on unknown but realized events. In the strategic

decision-making (SDM) experiment, subjects made a streak of decisions in which payoffs

depend on the randomly matched subject’s decisions.

2.1 Overview

In the ODM experiment, as illustrated in Table 1, subjects repeatedly play by them-

selves modified Matching Pennies games with unknown events. The subject’s options, U,

M, and D in this example, are listed in the first column. The first row shows events and

probabilities; in this example, (L=3/4, R=1/4) means that event L will be realized with

probability 3/4, and event R with probability 1/4. The matrix shows the subject’s payoff.

For example, if she chooses M and event L is randomly drawn, she earns (3−v)/4 points,

where v is an individually-measured parameter that makes M as favorable as certainty

equivalence. Their risk preferences were individually measured prior to the experiment.

Game 1 L= 3/4 R= 1/4

U 1 0

M 3(1−v)/4 (1−v)/4

D 0 1

Table 1: An Example of the Payoff Matrix in the ODM Experiment

The ODM experiment consists of four separate games, and each game consists of four

sets. Each set also consists of four rounds. Therefore, subjects make decisions for a

total of 64 rounds. A new event is drawn from the known probability distribution at the

beginning of each set (four rounds). Subjects are informed that an event (either L or R

in the example) is realized, and that event will not be changed within a set, but they do

not know which event is realized. In other words, subjects face the same but unknown

event for four rounds. After that, a new event is drawn, and they face another unknown

event for another four rounds, and so on. Based on the subjects’ choice patterns from

four different games, we categorize their mixing propensities.
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The SDM experiment was conducted with the same subjects who participated in the

ODM experiment. In the two-player beauty contest game in Costa-Gomes and Crawford

(2006), subjects earn more when they guess the match’s action more accurately. This

idea is maintained in our SDM experiment. Both player 1 (P1) and player 2 (P2) know

the choice intervals and target parameters of P1 and P2. P1’s goal is to submit a number

within P1’s choice interval, and P1’s payoff becomes larger as the submitted number is

closer to P2’s number times P1’s target parameter. Similarly, P2’s goal is to choose a

number within P2’s choice interval, and P2 earns more if the number is closer to P1’s

number times P2’s target parameter. For example, if both players choose a number be-

tween 0 and 100, and if the goal of the game is to submit a closer number of two-thirds of

the other player’s number, P1’s range is [0,100], P1’s target parameter is 2/3, P2’s range

is [0,100], and P2’s target parameter is 2/3. There are three distinct differences between

ours and the previously-conducted two-player beauty contest games. First, subjects play

eight rounds of beauty contest games in five sets. In each set, they play with a new

match. This setup allows us to fully examine the relationship between the individuals’

strategic choice patterns and their mixing propensity type. Second, the payoff function

is deliberately designed to distinguish a player’s deterministic choice from a naïve ran-

dom choice within an interval. Third, we introduce a calculation panel that tracks the

subjects’ exact thought process.

2.2 The ODM Experiment

We design the ODM experiment to identify an individual’s mixing propensity type.

The entire ODM experiment consists of four different Matching Pennies games, and sub-

jects play each game repetitively. Each game consists of four sets, and each set consists

of four rounds. That is, each Matching Pennies game is repeated for 16 rounds. Subjects

are told that a new event is randomly drawn from the known probability distribution

per each set. Subjects face the same event for four rounds within a set, and as the set

changes, they will face another event for another four rounds. Since there are four differ-

ent games, each subject plays 64 rounds (4 games × 4 sets × 4 rounds) during the entire

experiment.

To prevent subjects from learning about the event from previous outcomes, we did

not disclose the outcome of the game to the subjects during the experiment. They were

informed of the realized outcome at the end of the experiment and got paid privately

by the outcome. Moreover, the game with the events (or the action played by the com-

puter player) allows us to prevent subjects from concerning about the other-regarding

preferences, such as inequity aversion (Fehr and Schmidt, 1999).

Table 2 describes four Matching Pennies games used in the ODM experiment. In
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every round, subjects choose one of the entities listed in the first column. The event is

drawn from the first row with the probability associated with each event. For example,

subjects can choose one among U, M, and D in Game 1, and an event is either L with

probability 3/4 or R with probability 1/4. The subject’s payoff is described in the payoff

matrices.

The structure of each Matching Pennies game is varied by (1) the existence of domi-

nant actions, (2) the number of choices, and (3) the highest expected payoffs subjects can

earn. Table 3 summarizes the structure.

Note that M in Games 1 and 2 and B in Games 3 and 4 are choices that subjects

can earn nonzero payoffs for any event, which we call a hedging action. The discount

of payoffs for the hedging action, vi for subject i, is adopted to restrict the subject’s bias

toward the hedging action because of his/her risk aversion. Since the hedging action

gives the same expected payoff from each single action choice and always guarantees a

positive amount of payoff, risk-averse subjects may consider the hedging action to be the

dominant choice as long as the payoff is greater than the certainty equivalence of the

game. To exclude this concern, we measured their risk preferences before the beginning

of the ODM experiment and discounted their payoff of the hedging action accordingly.

Thus, the payoff of the hedging action equals the certainty equivalence of the game.4

From the ODM experiment, we categorize subjects into one of the four possible types,

based on their choice patterns. The Rational Optimizer (RO) plays an optimal action

that maximizes the expected payoff for all rounds for all sets. The Probability Matcher

(PM) mixes his/her action to match the given probability within each set, and this mixing

proportion is equal across the sets. The Uniform Matcher (UM) plays the same action

within each set, but the proportion of sets with a single action will be equal to the given

probability. The Hedging Matcher (HM) plays an ‘intermediate’ action for all rounds in

all sets. We use the Maximum Likelihood estimation for categorization. Their behavioral

patterns distinguish these four types.

Theoretical Benchmark 1. (Mixing Propensity) Individuals with different mixing propen-
sity show different decision-making patterns;

1. An RO-type player always chooses the action that maximizes the expected payoff.

2. A PM-type player mixes different actions within each set, and the proportion of
mixing follows the probability distribution of the corresponding states.

3. A UM-type player chooses a single action within each set but changes the action
across the sets. The proportion of the mixing follows the probability distribution of
the corresponding states.

4We follow Holt and Laury (2002) to measure the risk preferences.
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Game 1 L = 3/4 R = 1/4

U 1 0

M 3(1−vi)/4 (1−vi)/4

D 0 1

Game 2 L = 1/2 C = 1/4 R = 1/4

U 1 0 0

M 0 1 0

D 0 0 1

B (1−vi)/2 (1−vi)/4 (1−vi)/4

Game 3 L =1/2 R = 1/2

U 1 0

M (1−vi)/2 (1−vi)/2

D 0 1

Game 4 L = 1/4 LC = 1/4 RC = 1/4 R = 1/4

U 1 0 0 0

MU 0 1 0 0

MD 0 0 1 0

D 0 0 0 1

B (1−vi)/4 (1−vi)/4 (1−vi)/4 (1−vi)/4

Table 2: Matching Pennies Games in the ODM
Each subject plays all four games in random order. The discount for a hedging behavior,
vi (M in Games 1 and 2 and B in Games 3 and 4), varies according to the subject’s risk
preferences, which are measured by a survey beforehand.
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Existence of
Dom. actions?

The number
of states

The highest
expected payoff

Game 1 Y 2 3/4

Game 2 N 2 1/2

Game 3 Y 3 1/2

Game 4 N 4 1/4

Table 3: Comparisons of Four Matching Pennies Games

4. An HM-type player always chooses a hedging action that provides a positive payoff
in all cases.

Table 4 shows possible choice patterns of each type in Game 1.

Game 1 Set 1 Set 2 Set 3 Set 4

RO U4 U4 U4 U4

PM U3D1 U3D1 U3D1 U3D1

UM U4 D4 U4 U4

HM M4 M4 M4 M4

Table 4: Predicted Behavior of Four Types in Game 1

This table shows how a player with a certain type of mixing propensity will choose actions. When a player
is expected to choose an action A∈ {U,M,D} for n times, it is denoted by An. The RO-type subject will play
U, the choice that gives the largest expected payoff, all of the time. The PM-type subject will match the
frequency of her choices with the probability of events. Thus, in each set of four rounds, she will mix three
Us and one D, up to permutation. The UM-type subject will play the same action within a set, but she will
match the frequency of her choice blocks with the probability of events. Three sets of Us and one set of Ds
will be chosen, up to permutation. The HM-type subject will choose H all of the time.

The RO-type subject is expected to play action U all the time because U maximizes

the expected payoff. The PM-type subject is expected to play action U three times in

each set because the PM-type is expected to mix his/her play to match the frequency of

each choice with the given probability within each set. The UM-type subject is expected

to play the same action, either U or D, within each set, but the proportion of sets that

each action is played will be matched to the given probability. The HM-type subject is

expected to play the intermediate action M all of the time.
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2.3 The SDM Experiment

We design the SDM experiment to identify individual strategic decision-making pat-

terns. The entire experiment consists of eight sets, and each set consists of five rounds of

the two-player beauty contest game. In each set, two subjects are randomly and anony-

mously matched and play a game for a whole set of five rounds with the partner. That

is, they repeat playing one beauty contest game for five rounds within a set. As the set

changes, each subject is randomly and anonymously re-matched to another partner, with

whom they play a new beauty contest game. The eight games have different structures

concerning the choice intervals and target parameters.

As in the ODM experiment, the realized outcome from the subjects’ choices was not

disclosed during the experiment. That is, subjects played the game without feedback,

and the outcome of their choices was revealed only at the end of the completed SDM

experiment. This restriction prevented subjects from learning retrospectively or through

experience. In each round, subjects earned payoffs according to a “payoff function,"5

and the monetary compensation was paid based on the sum of payoffs at the end of the

experiment. Subjects were informed about every detail of the SDM experiment.

We used eight different two-player beauty contest games, in which choice intervals

and target parameters varied. The form of each game is described by four factors: a

choice interval and a target parameter for both player 1 and player 2. For notational sim-

plicity, α denotes a choice interval [100,500], β denotes [100,900], δ denotes [300,900],

and γ denotes [300,500]. A target parameter is denoted as n1 = 0.5, n2 = 0.7, n3 = 1.1,

and n4 = 1.5 respectively. Moreover, we designed the games to vary regarding the num-

ber of iterations needed to arrive at the Nash equilibrium choice, the pattern of iter-

ated strategies, and the location of the Nash equilibrium choice. Thus, always choosing

the largest or the smallest number in the choice interval does not maximize a subject’s

payoffs, and subjects were informed of this at the instruction stage. Combined with

the no-feedback policy, such variations prevented subjects from routinizing their strate-

gic/behavioral choice patterns. Thus, we can expect that subjects would concentrate on

their own strategy and belief to maximize their payoff in each game. Table 5 summarizes

the details of the structure of games.

We designed the eight games to be paired into four pairs so that each subject can be

assigned to play the two different positions in the same game. For example, the game

labeled αn2βn4 and the game labeled βn4αn2 are paired, so player 1 in game αn2βn4

plays the exactly same role as player 2 in game βn4αn2. Similarly, player 1 in game

βn4αn2 plays exactly the same role as player 2 in game αn2βn4. Subjects were also

5To minimize concerns about miscalculation and heterogeneity in comprehensibility, we did not give
subjects the exact functional form. Details are provided in Section 2.3.1.
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informed about this feature of the games. To minimize experience-based learning, we

shuffled the order of the eight games without allowing two paired games to be played

consecutively.

Game
Target

Structure #Iterations
Pattern of
Iterations

End with
Dominance

αn2βn4 Mix/High 17 A Y
βn4αn2 Mix/High 18 A N
δn3βn1 Mix/Low 4 A Y
βn1δn3 Mix/Low 5 A N
βn1βn2 Low 4 S Y
βn2βn1 Low 4 S Y
δn3γn3 High 2 A N
γn3δn3 High 2 A Y

Table 5: Forms of the Beauty Contest Games

The form of each game is described by four factors: a choice interval and a target number for both player
1 and player 2. α denotes a choice interval [100,500], β denotes [100,900], δ denotes [300,900], and γ de-
notes [300,500]. A target number is denoted as n1 = 0.5, n2 = 0.7, n3 = 1.1, and n4 = 1.5. Target Structure
describes the pair of target numbers. ‘High’ (respectively, ‘Low’) describes the case in which both target
numbers (for example, n2 and n4 in αn2βn4) are greater (resp., smaller) than 1. ‘Mix/High’ (respectively,
‘Mix/Low’) describes the case in which one number is greater than 1, and the other one is smaller than
1, and the multiplication of two numbers is greater (resp. smaller) than 1. #Iterations describes how
many steps of the iterated dominance are required to arrive at the Nash equilibrium. Pattern of Itera-
tions describes whether the number that corresponds to each step of the iterated dominance is monotone
increasing/decreasing (denoted as ‘S’) or oscillates (denoted as ‘A’). When the Nash equilibrium strategy is
to choose the boundary of the choice interval, the strategy coincides with the iterated dominance.

The eight games differ in various respects. The main difference derives from the

target structure, which describes the pair of target numbers. In two games, both target

numbers are greater than 1. In another two games, both numbers are smaller than 1.

In the remaining four games, one target number is greater than 1, and the other one

is smaller than 1. In two games (resp., the other two games) among those four, the

multiplication of two numbers is greater (resp., smaller) than 1. The games also differ in

terms of the required number of steps using the iterated dominance to arrive at the Nash

equilibrium choice. In two games, the best response is monotone increasing/decreasing

in the level of the iteration of dominance, while in the other six games the best responses

oscillate. In five games, the Nash equilibrium choices coincide with the boundary of

the choice interval, while the Nash equilibrium choices are interior for the other three

games.
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2.3.1 Calculation Panel

When interpreting observations from two-player beauty contest games, the possibil-

ity of miscalculation is one of the main concerns. Previous studies consider a symmetric

payoff function wherein payoff decreases with the absolute difference between the ac-

tual choice and the ideal guess (the matched player’s number times the target number).

Although the payoff structure is claimed to be simple, it could be problematic if the

calculation ability of subjects varies. To avoid potential issues that could arise from mis-

calculation, we provide a calculation panel rather than asking subjects to calculate their

optimal choices based on their beliefs.

Figure 1: A Screen-shot of Calculation Panel
This calculation panel has two main purposes: to avoid potential miscalculations and to obtain richer data
that will provide a better understanding of how a subject’s thought process works. In the module above,
a subject can calculate his/her optimal choice based on his/her belief about the opponent’s choice. In the
module below, a subject knows what the opponent will choose within his/her own beliefs.

A subject can use the calculation panel to find the exact number that corresponds

to his/her best response to his prediction of his/her partner’s choice. The calculation

panel contains two modules. The module (“module A”) in the upper half gives the best

response to the player’s prediction of his opponent’s choice. The module (“module B”)

in the lower half provides the best response for the opponent with respect to his/her

prediction of the opponent’s prediction of the player’s choice. For each module, subjects

can choose an interval, with a singleton allowed. In module A, subjects can input the

lower bound and the upper bound of an interval within which the opponent’s choice might

be placed. After that, clicking the ‘Calculate’ button generates the red-colored number
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that maximizes the player’s own payoffs. The distribution over the range is fixed as the

uniform distribution over the selected range, about which subjects were informed. Figure

1 considers player 1 in the game δn3βn1. If player 1 wants to find the L1 strategy based

on the belief that his/her partner’s choice could be any number from 100 to 900, he/she

may enter 100 for the lower bound and 900 for the upper bound and click the Calculate

button. Module A will generate the result of 678 as the closest integer approximate of

the best response 678.3. Subjects are informed that their use of the panel and its result

will not affect their monetary outcome at the end of the session.

This approach has at least two notable merits. First, the calculation panel allows

subjects to find the exact number that corresponds to the higher order of iterated dom-

inance (Lk with k > 1) with no possibility of miscalculation. To know the L3 choice,

player 1 needs to know in advance his/her partner’s L2 choice, which would be the best

response to player 1’s L1 choice. Thus, player 1 can input the lower bound 100 and the

upper bound 900, which correspond to his/her own range of choice to have his/her own

L1 choice. After that, that player inputs the L1 choice to the range of module B (by in-

putting the same number in both the lower and upper bounds) in order to calculate the

L2 choice, which is the opponent’s best response. For example, 678 in game δn3βn1 is

the choice that player 1 will make if player 1 is of the L1 type. From this result, player 1

can input 678 in module B to obtain the result of the L2 choice of the opponent, which is

339. Then, player 1’s best response can be obtained by inputting 339 in module A. Sec-

ond, the usage record of the calculation panel allows us to track the individual subject’s

decision process. That is, having tractable records for the calculation process at each

step of iterated dominance helps us identify the paths that subjects followed to reach the

final decision. Even if their actual decision differs from the last calculation result, we

are still able to understand how the subjects use their calculation process when making

the strategic decision.

We acknowledge that the introduction of the calculation panel has its drawbacks.

First, the calculation panel implicitly pushes subjects to assume either uniformly ran-

domizing L0 behaviors or anchoring L0 behaviors. It is known that the estimation of the

belief structure is sensitive to the assumption of the L0 behaviors, yet this calculation

panel does not accommodate the odd possibility that some subjects with higher-order

rationality believe that L0 players would choose one of the discrete choices–say, a lower

bound and an upper bound. Second, introducing the calculation panel still does not

perfectly reveal whether subjects make random choices. If subjects choose any num-

ber without using the calculation panel for a set, we can infer that they make random

choices, but no subjects made such a purely random choice. Subjects can also make any

choice even after using the calculation panel, but we cannot tell whether that choice is
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randomly made or is derived from their own thought processes after taking into account

the results of the calculation panel. However, we believe that the merits outweigh the

drawbacks.

Given this structure, Table 6 shows that player 1’s choices correspond to each level of

the iterated dominance, the Nash equilibrium, and the remaining intervals correspond

to each round of the iterated deletion. L1 is the first level of the iterated dominance

when the subject believes his/her opponent chooses numbers drawn from a uniform dis-

tribution over the entire interval. L2 (resp. L3) is the second (resp. the third) level of

iterated dominance at which the subject considers their opponent to play the L1 (resp.

L2) strategy. NE is the Nash equilibrium choice of the game. For example, consider

game αn2βn4. The L1 strategy is to choose 419. Then the L2 strategy (the optimal strat-

egy when the opponent chooses his/her L1 strategy) is to choose 361. Similarly, the L3

strategy is to choose 440. The remaining interval strictly undominated in the first round

of the iterated dominance is [100,450].

Game L1 L2 L3 NE 1st Round 2nd Round 3rd Round 4th Round

αn2βn4 419 360 440 500 100, 450 105, 500 105, 472.5 110.25, 500
βn4αn2 515 629 540 750 150, 750 150, 675 157.5, 750 157.5, 708.75
δn3βn1 678 363 373 300 300, 900 300, 495 300, 495 300, 300
βn1δn3 330 339 181 150 150, 450 150, 450 150, 247.5 150, 247.5
βn1βn2 303 209 106 100 100, 450 100, 315 100, 157.5 100, 110.25
βn2βn1 419 212 146 100 100, 630 100, 315 100, 220.5 100, 110.25
δn3γn3 463 550 550 550 330, 550 363, 550 399.3, 550 439.3, 550
γn3δn3 500 500 500 500 330, 500 363, 500 393.5, 500 439.3, 500

Table 6: Player 1’s Strategic Choices with respect to the Iterated Dominance
This table shows theoretical predictions regarding various contingencies. The first column headed ‘L1’
shows the best response of player 1 when the opponent chooses any random number in the interval. The
second through fourth columns, headed ‘L2’, ‘L3’, and ‘NE,’ respectively, show the corresponding best
responses of player 1 when the opponent’s cognitive iteration level varies accordingly. The fifth to last
columns show the strictly undominated intervals after the corresponding rounds of the iterated dominance.

3 Results

Six sessions of laboratory experiments were conducted with 86 participants in the

Missouri Social Science Experimental Lab (MISSEL) at the Washington University in St.

Louis. From these participants, we obtained 62 effective subjects from those who passed

screening tests in both experiments. We estimated their type by using the data from the
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ODM experiment. Using the MLE method6, we found that in all effective samples, the

proportions of RO-, PM-, and HM-type subjects are 45.2%, 25.8%, and 29%, respectively

(Table 7). Since no single subject exhibits choice patterns consistent with the UM type,

we restrict our attention to RO-, PM-, and HM-types.

Type Count %

RO 28 45.2
PM 16 25.8
HM 18 29.0
UM 0 0

Sum 62 100

Table 7: Overall Distribution of Mixing Propensity in the ODM experiment
Based on the choice patterns in the ODM experiment, we categorize subjects into one of four possible types.

We relate this categorization of subjects to their behavioral pattern in the SDM ex-

periment. Our primary hypothesis is that subjects’ behavioral patterns in the ODM

experiment are positively associated with behavioral patterns in the SDM experiment.

We find that the following two observations are consistent with the predictions of our

primary hypothesis.

1. RO-type subjects tend to show a higher level of cognitive iterations with a smaller

variance of the choice distributions than PM-type subjects.

2. HM-type subjects are less likely to diversify their choices than PM-type subjects,

and the variance of their choice distributions is similar to that of RO-type subjects.

In short, RO-type subjects seem to be more reflective than HM- or PM-type subjects,

and PM-type subjects change their decisions according to their belief distribution re-

garding their match’s cognitive ability. For example, if a PM-type subject believes that

he plays the game with L0 player with a 70% chance and L1 player with a 30% chance,

then he behaves as if he is the L1 player for 70% of all the games, and the L2 player

for the remaining 30% of the games. That creates more choice variation. Meanwhile,

HM-type subjects exhibit the lowest cognitive iterations of the three groups, and they

seem to consistently make ‘belief-weighted’ choices in keeping with their own beliefs.

Result 1. RO-type subjects tend to show a higher level of cognitive iterations
with a smaller variance of the choice distributions than PM-type subjects.

6For detailed statistical analysis, see Appendix A. Roughly speaking, provided that the subject has a
specific type, we calculate each subject’s “error” and find the type that yields the smallest error.
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To develop a simple understanding of how many cognitive iterations each subject ex-

ecuted, we aggregated the subjects’ choice data from the SDM experiment by their ODM

type. Roughly speaking,7 we did the following. Each individual’s choices were coded as

one integer between 1 and 4, where number k corresponds to k-th cognitive iterations.

For the sake of simplicity we call such codes ‘cognition levels.’ Note that no decisions

were coded as L0 because every subject used the calculation panel at least once for each

set. If the choices were made for more than four cognitive iterations, including the Nash

Equilibrium choices, we coded them as 4. In this manner, we found each subject’s “distri-

bution” of revealed cognition levels. Collecting individual distributions according to the

ODM type, we identified the distribution of variances of cognition levels for each group.

E[µi] E[σ2
i ]

RO 3.17 0.61
PM 2.71 1.03
HM 2.32 0.65

Table 8: Mean of Individual Means and Variances in Revealed Cognition Level by Type
This table shows how the choice patterns in the SDM experiment differ by the type categorized in the
ODM experiment. E[µi] refers to the mean of individual means of revealed cognitive iterations for making
decisions. E[σ2

i ] refers to the mean of individual variances of the revealed cognitive iterations.

Table 8 shows two summary statistics for the individual distributions of cognitive

iterations for each type. On average, RO-type subjects showed the cognition level of

3.71, while the mean of individual variances of the cognition level was 0.61. PM-type

subjects showed the average cognition level of 2.71, with an average variance of 1.03.

HM-type subjects showed the average cognition level of 2.32, with an average variance

of 0.65. RO-type and HM-type subjects showed a relatively lower variance than PM-type

subjects. In contrast, RO-type subjects showed a relatively higher average cognition level

than other subject types. This result implies that the types of subjects categorized by the

observations in the ODM experiment can be used to describe their behavioral patterns

in the SDM experiment.

To gain a more detailed understanding of the difference, we conducted a comparison

test of distributions for each of the pair groups.

Table 9 summarizes how decision patterns are statistically different from one an-

other. We tested the null hypothesis that the mean and variance of the two distributions

are from the same population.8 The test results show that RO-type subjects, on aver-

age, have a higher cognition level than both PM-type and HM-type subjects, and these
7For a detailed description of the procedure used to obtain the aggregate observations, see Appendix A.
8We used the Fisher method (F-test) to measure the statistical significance of the difference between

the two distributions.
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Mean Tests Variance Tests

Types RO&PM RO&HM PM&HM RO&PM RO&HM PM&HM

P-Values (one-sided) 0.012 0.004 0.11 0.044 0.439 0.024

Table 9: Test Results and p-values Between Distributions

differences are statistically significant at the 5% level (PM-type) and the 1% level (HM-

type), respectively. PM-type subjects have a weakly higher cognition level than HM-type

subjects, but this difference is statistically insignificant. On average, in the SDM exper-

iment, PM-type subjects show a larger variation in their cognition level than did either

RO-type subjects or HM-type subjects, and these differences are statistically significant

at the 5% level. There is no statistically significant difference in the variance of the

cognition level of RO-type subjects and HM-type subjects. Altogether, we found that,

on average, RO-type subjects are more likely to show a higher cognition level with less

variation than PM-type subjects.
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Figure 2: Proportions of Total Choices in Each Type

Figure 2 shows a proportion of choices from subjects in each type. More than 65% of

choices of RO-type subjects exhibit a higher (4 or more) cognition level. The cognition

levels of PM-type subjects are more dispersed than those of the RO-type. In summary,

this observation supports our presumption that in the SDM experiment, PM- and RO-

types inherit their behavioral pattern from the ODM experiment. RO-type subjects, who

consistently chose actions that maximized the expected payoff in the ODM experiment,

also showed consistent choice behavior at a certain level of cognition. PM-type subjects,

who in the ODM experiment matched the frequency of their actions to a given probability
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of events, also spread their actions to several different cognition levels based on their

beliefs about the cognitive level distributions of their opponents.

We also observe from Figure 2 that cognition levels of HM-type subjects are as dis-

persed as those of PM-type subjects. Our second observation is that the source of the

variation is different.

Result 2. HM-type subjects are less likely to diversify their choices than PM-
type subjects, and the variance of their choice distributions is similar to that
of RO-type subjects.

Our second observation is that HM-type subjects are distinguished from other types

in the respect that they choose a certain ‘intermediate’ value that may be reflected in

their belief distribution regarding their match’s level of cognition. In the ODM experi-

ment, HM-type subjects chose actions that give positive, but depreciated, payoffs in all

cases. We interpret their behavior as a subjective optimization that is supposed to min-

imize the risk of the wrong prediction. Thus, we presume that HM-type subjects may

choose some belief-weighted value that could be calculated by a weighted average of the

optimal choice at each cognition level. For example, suppose that a subject forms a belief

about her opponent’s cognition level distribution as L0: L1: L2 = 20: 30: 50 (%). In this

case, although the L3 choice may give her a maximized expected payoff, she may choose

the 0.2∗L1+0.3∗L2+0.5∗L3 choice consistently.

To acquire statistical evidence, we test whether the choice patterns of HM-type sub-

jects differ from those of other-type subjects. Because the aggregate choice distribution

of RO-type subjects is single-peaked (while the other two distributions are not), we fo-

cus here on the variances of individual subject’ choices. In Table 8, the average of the

individual variances of RO-type subjects is 0.61, while that of HM-type subjects is 0.65.

We tested the null hypothesis that the two sample distributions are from a population

with the same variance. The test result (p-value of 0.439) cannot reject the null hypoth-

esis. We also tested a hypothesis that these distributions have the same variance as the

PM-type subjects. The test result rejects the hypothesis that the RO- and the HM-type

group has the same mean of the variance of individual choices as the PM type at the 5%

of significance level (Table 9).

In other words, both RO-type subjects and HM-type subjects, regardless of whether

the choice is or is not optimal, have a tendency not to change their decisions within the

same set of the SDM experiment. HM-type subjects are likely to choose an intermediate

(belief-weighted) level of cognition consistently, which makes a variance of choices sim-

ilar to that of RO-type subjects. Their behavioral pattern is sharply distinguished from

that of PM-type subjects, who tend to change the choices within the same set of the SDM
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Figure 3: Examples of Individual Subjects’ Choices by Type
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experiment. The observed cognition level of the HM-type subjects is lower than that of

the RO-type subjects. Such a behavioral pattern is consistent with our prediction regard-

ing the HM type. Figure 3 shows the choices of individual subjects by type. We picked

from each type two subjects whose choices clearly illustrate the results. As we discussed

earlier, subjects 13 and 21, the RO type, mostly made decisions at the higher order ra-

tionality, and they were less diversifying the choices than PM-type subjects. Subjects 48

and 56, the PM type, diversified their choices more than the other two types. Subjects 12

and 55, the HM type, tended to stick to their decisions, but each subject’s cognition level

varied. Also of interest is the fact that the unclassified choices of the HM type subjects

were close to the average of two cognition level choices: Subject 55 consistently chose 161

in set 6, which is 0.5*L2+0.5*L3, and subject 12 frequently chose 509, which is close to

0.5*L1+0.5*L2.

3.1 Recovery of Belief Structure

We investigate the belief structure of the PM type. From the results described above,

we claimed that the behavioral patterns observed in the ODM experiment have some

predictive power for the SDM experiment. This result implies that the choice distribu-

tion of the RO-type subjects, which is mostly bunched at the Nash equilibrium action,

cannot fully reveal the underlying belief structure of these subjects. The only inference

we can draw from this observation is that most of RO-type subjects believe that their

match is most likely to choose the Nash Equilibrium action. However, PM-type subjects

tend to diversify their responses in the SDM experiment, and their responses can reveal

their underlying belief structure. Thus, to recover their underlying belief structure, we

consider the actual responses of 16 PM-type subjects.

Level L1 L2 L3/3+ NE Unclassified SUM

Count 97 79 57 159 248 640
w/ Unclassified (%) 15.2 12.3 8.9 24.8 38.8 100
w/o Unclassified (%) 24.7 20.2 14.5 40.6 - 100

Table 10: Overall Distribution of Cognition Level for the PM Type in the SDM

Table 10 and Figure 4 summarize how PM-type subjects distributed their responses

at almost every level of cognition. Even though the Nash Equilibrium (NE) responses are

the most frequently chosen actions, they allocated nontrivial proportions of their choices

to different levels of cognition. The sum of proportions of L1 and L2 actions is larger

than that of NE actions. This result implies that most of the PM-type subjects respond
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Figure 4: Proportions of Total Choices from the PM Type

to the existence of L0 or L1 subjects.

Another interesting observation is that as the cognition level increases, the propor-

tion of the level decreases. From Table 10, proportions of L1, L2, and L3/3+ levels are

24.7%, 20.2%, and 14.5%, respectively. When we consider unclassified responses as a

random-like behavior (which correspond to L0 behavior), the trend remains consistent.

The last observation is that the proportion jumps to 40.6% at the NE action. This

proportion of PM-type subjects is smaller than that of RO-type subjects, but at the same

time, it is too large to conclude that PM-type subjects cannot carry on necessary cogni-

tive iterations to reach the NE action. A combination of the following could interpret

this observation. First, PM-type subjects may believe that a smaller proportion of the

population is equipped with a higher cognition level. Thus, they may strategically assign

a smaller proportion to the higher level of cognition than RO-type subjects. Second, sub-

jects may consider the NE action as a focal point and therefore put the highest weight.

These two interpretations jointly imply that the ability of cognitive iteration of PM-type

subjects is as high as that of RO-type subjects.

4 Concluding remarks

In this study, we examine how an individual’s (possibly non-rational) choice patterns

are related to their strategic decision-making patterns. We consider that each individual

who faces a probabilistic event has a different way of making decisions, and we categorize
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these into three different types: the Rational Optimizer (RO), the Probability Matcher

(PM), and the Hedging Matcher (HM). We found more than a half of our subjects show

choice patterns other than rational optimization. Our main observation is that when

asked to make strategic decisions, each type shows different decision-making patterns.

While RO-type subjects focused more on the Nash equilibrium action, PM- and HM-type

subjects choose their actions in response to lower cognition levels. PM-type subjects, in

particular, diversify their actions to multiple levels of cognition in the SDM experiment

as they diversify their decisions in the ODM experiment.

Assuming that PM-type subjects match the frequency of strategic choices to their

belief distribution about the other players’ cognition levels, as they did in the ODM ex-

periment, we can recover details of their underlying belief structure. We observe that

PM-type subjects played different actions within a set and assigned a lesser proportion

of actions to higher levels of cognition (L1: 15.2%, L2: 12.3%, L3/3+: 8.9%). This result

suggests that subjects strategically assigned their actions by their underlying beliefs.

Moreover, we observe that PM-type subjects also assigned a higher proportion (24.8%) to

the Nash equilibrium action. This finding supports the results of Camerer et al. (2004),

who claim that subjects regard the Nash equilibrium as a focal point. Summarizing

these observations, we conclude that subjects do have heterogeneous belief structure,

and it consists of several different levels of cognition, but we still consider the Nash

equilibrium as a plausible focal point.

The relationship between the decision-making patterns in the ODM experiment and

the SDM experiment suggest that the literature may have underestimated the belief of

bounded rationality. If every subject were the PM type, the belief structure estimated by

the Level-k theory must be downward biased. If every subject were either the RO type

or the HM type, the belief structure estimated by the Cognitive Hierarchy model would

underestimate the variance of the distribution.
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Appendix A. Statistical Model Specification

A.1. ODM Model Specification

In the ODM experiment, subjects make one choice in each round, yielding 64 choices

in total. According to the choices, we categorize subjects’ choice patterns into four types:

RO (the Rational Optimizer), PM (the Probability Matcher), UM (the Uniform Matcher),

and HM (the Hedging Matcher). We adopt the maximum likelihood method.

Let xi,k
g, j ∈ {0,1,2,3,4} denote the number of subject i’s decisions that are identical to

the type k subject’s decision in game g of set j. We define k ∈ K = {RO,PM,UM,HM}

and g, j = 1,2,3,4. We similarly define a vector xi k
g = (xi,k

g,1, · · · , xi,k
g,4).

We define εk ∈ [0,1] as the type-specific rate of random choice that is independently

and identically distributed. cg is the number of actions that each subject has in game

g. That is, c1 = c2 = 3, c3 = 4, and c4 = 5. Since εk is assumed to be type-specific and

identically distributed over all the choices, we formulate the probability that the subject

of the type k makes some predicted decisions in game g as 1−εk+εk/cg = 1−(cg−1)·εk/cg.9

Then, Li,k
g (εk| xi,k

g ) is the probability of observing xi,k
g when the subject i is of type k:

Li,k
g (εk|xi,k

g )=
4∏

j=1

[
1− (cg −1) ·εk/cg

]xi,k
g, j ×

[
εk/cg

]4−xi,k
g, j .

Similarly, we define x̂i,k
g as the number of sets of subject i’s decision that equals type

k’s decision in game g. That is, x̂i,k
g counts the number of sets in each vector xi,k

g such

that each set has exactly the same number of the type k subject’s decision. For example,

consider a RO-type subject who chooses the same action in 3 sets (say, set 1, 2, and 3)

and mixes two actions in another set (set 4). Then, x̂i,k
g = 3 since the number of sets that

equals to the RO-type subject’s decision is 3 (set 1, 2, and 3). With the similar notion,

9For example, suppose that a subject is an RO. With εRO = 0, or if she does not make any mistakes, she
will choose the action that maximizes the expected payoff with a probability of one. If εRO = 1, that is, if
she makes a choice in a completely random manner, then the probability of the optimal choice is 1/cg.
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we define a vector x̂i,k = (x̂i,k
1 , · · · , x̂i,k

4 ). Then, we define L̂i,k(εk| x̂i,k) as the probability of

observing x̂i,k when the subject i is of type k:

L̂i,k(εk|x̂i,k)=
4∏

g=1

[
Li,k

g (εk|xi,k
g )

]x̂i,k
g ×

[
1−Li,k

g (εk|xi,k
g )

]4−x̂i,k
g

.

Next, we define zi,k as a type indicator for subject i, where zi,k = 1 if subject i is of

type k and
∑

k∈K zi,k = 1. From L̂i,k(εk|x̂i,k), subject i’s maximum likelihood function can

be calculated:

Li(ε, zi|xi)= ∏
k∈K

L̂i,k(εk|x̂i,k)zi,k

= ∏
k∈K

[
4∏

g=1

{
Li,k

g (εk|xi,k
g )

}x̂i,k
g ×

{
1−Li,k

g (εk|xi,k
g )

}4−x̂i,k
g

]zi,k

,

where ε= (εk)k∈K , zi = (zi,k)k∈K , and xi = (xi,k
g )g=1,··· ,4

k∈K .

As a result, we can estimate the distribution of zi = (zi,k)k∈K , which allows us to

categorize subject i’s individual mixing propensity. We categorize subject i into the type

(one of four) that has the highest zi,k. The details follow.

A.1.1. Type Categorization

Each subject with a different mixing-propensity type may have a different pattern

for each game. Suppose that subject i played (UUUD, UUUM, UUDD, UUUU) in game

1. Each entry of the vector corresponds to four-round actions played in each set. If she

were to be the RO-type subject, then xi RO
1 = (xi,RO

1,1 , · · · , xi,RO
1,4 ) = (3, 3, 2, 4) and x̂i,RO

1

= 1. That is, any non-U actions are considered to be “wrong” actions for an RO-type

subject. If she were to be the PM-type subject, xi,PM
1 = (4, 3, 3, 3) and x̂i,RO

1 = 1. We

count any permutation of three Us and one D within a set as “right" actions for the PM

type and deviations from it as “wrong" actions. In set 2, the subject played M instead

of D (which was supposed to be chosen as the PM type), and we count three U actions

as the matched actions for the PM type and M as a mismatched action. Similarly, in set

3 we count one D action as the mismatched action because the subject played D more

than one time. If she were to be the UM-type subject, then she is supposed to play either

four Us or four Ds in each set, so xi,UM
1 = (3,3,2,4) gives the highest matching entries.

In sets 1, 2, and 4, the action U is interpreted as a dominant action and in set 3, D is

interpreted as the dominant action, so x̂i,UM
1 = 1. Lastly, if she were to be the HM-type

subject, xi,HM
1 = (0,1,0,0) and x̂i,HM

1 = 0. Table 11 shows examples of choice patterns of
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the RO-type subject and the PM-type subject.

Rational Optimizer

Set 1-4 Game1 Game2 Game3 Game4

R1 U U ANY ANY

R2 U U ANY ANY

R3 U U ANY ANY

R4 U U ANY ANY

Probability Matcher

Set 1-4 Game1 Game2 Game3 Game4

R1 U U U U

R2 U D U MU

R3 U U M MD

R4 D D D D

Table 11: Examples of the RO-type (left) and the PM-type (right) subject’s choice patterns

In Games 3 and 4, any choice yields the same expected payoff. Thus, the rational optimizer would mix any
of the choices. The choice patterns for the probability matcher are up to permutation.

In Games 1 and 2, the RO-type subject is supposed to play U for every round of every

set. In Games 3 and 4, any choice is regarded as the optimal choice because all actions

are expected to give the exactly the same payoff. We identify the RO-type from the other

types by the pattern of plays exhibited in Games 1 and 2.

We can distinguish the PM-type subject from the other type by observing how each

subject mixes the proportion of plays: The proportion must be kept across the sets and

matched to the given distribution of the events. In Game 1, the PM-type subject is

supposed to play U three times and D once. The order of plays is irrelevant as long as

the frequency is kept to 3 Us and 1 D in each set. In Game 2, U and D are each supposed

to be played two times in each set. This proportion of mixing actions is matched to the

given distribution of the events (Prob(L)= Prob(R)= 1/2). In Game 3, to match the given

distribution of the events, action U is supposed to be chosen two times, and M and D are

supposed to be chosen one time each in every set. In Game 4, all actions (U, MU, MD,

and D) are supposed to be chosen one time in each set.

Uniform Matcher

Game1 Game2 Game3 Game4

Set 1 U4 U4 U4 U4

Set 2 U4 U4 U4 MU4

Set 3 U4 D4 M4 MD4

Set 4 D4 D4 D4 D4

Hedging Matcher

Game1 Game2 Game3 Game4

Set 1 M4 M4 B4 B4

Set 2 M4 M4 B4 B4

Set 3 M4 M4 B4 B4

Set 4 M4 M4 B4 B4

Table 12: Examples of the UM-type (left) and the HM-type (right) subjects’ choice pat-
terns

Table 12 shows examples of choice patterns of the UM-type subject and the HM-type

subject. The UM-type subject is supposed to play the same action within each set. Unlike
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the RO type, the UM-type subject may change his actions in each set so that he matches

the frequency of choices to the probability distribution of the corresponding events. For

example, in Game 1, the UM-type subject may choose four Us in three sets and four Ds

in the other set. In Game 2, the UM-type subject may choose four Us in two sets and

four Ds in the other two sets. In Game 3, U would be played in two sets and M and D

would be chosen in one set each. In Game 4, one action would be played in each set. By

observing such choice patterns, we can distinguish the UM-type subject from the other

type.

The HM-type subject is supposed to play the hedging actions that always provide

some positive payoff. In each game, such hedging action (M in Games 1 and 2 and B

in Games 3 and 4) would provide a discounted payoff according to their own risk prefer-

ences, so it cannot be more beneficial than playing the rational action. Since the HM-type

subject act in a homogeneous manner, we can distinguish the HM-type easily from the

other types.

A.2. SDM Model Specification

A.2.1 Information and Payoff

In each round, subjects face the set of information {[a1,b1], p1; [a2,b2], p2}, where

[ai,bi] is the range within which player i ∈ {1,2} can choose a number, and pi is the

target parameter for player i. That is, each subject completely knows his own and his

partner’s strategic environments. In every game, subjects are notified that they play the

role of player 1 and their partner plays the role of player 2. We denote xi ∈ [ai,bi] as a

choice of player i. In each round, player 1 earns payoffs that depend on his choice x1 and

player 2’s choice x2. We set the payoff function P(x1|x2; [a1,b1], p1, [a2,b2], p2) as follows:

P(x1|x2; [a1,b1], p1, [a2,b2], p2)= 100

1−

∣∣∣ln(
x1−p1·x2

|a1−p1·b2| +1
)∣∣∣

ln
(
b1 −a1 + p1(b2 −a2)

)


≡ 100

1−

∣∣∣ln(
x1−p1·x2

|e1| +1
)∣∣∣

ln
(
e1 − e1

)
 ,

where e1 and e1 denote the largest and smallest possible differences between x1 and

p1 ·x2, respectively. That is, e1 ≡ b1−p1 ·a2 and e1 ≡ a1−p1 ·b2. For notational simplicity,

we denote P(x1|x2; [a1,b1], p1, [a2,b2], p2)≡ P1(x1|x2; e1), where e1 = (e1, e1).

Player 1 can maximize his own payoff by minimizing the difference between x1 and

p1 · x2 with respect to his own prediction of x2. Suppose that player 1 believes that his

29



partner chooses a certain action x2 that is uniformly drawn from an interval [x2, x2] ⊆
[a2,b2]. We denote the belief as a probability distribution f 1(x2|x2, x2). Then, the ex-

pected payoff from player 1’s choice x1∗ is given by

E[P1(x1∗|x2; e1)]=
∫ x2

x2

100

1−

∣∣∣ln( x1∗−p1·x2

|e1| +1)
∣∣∣

ln(e1 − e1)


 f 1(x2|x2, x2)dx2.

Then, the optimal choice x1∗ that maximizes P1(x1∗|x2; e1) satisfies the following

equation:

(x1∗− p1 · x2 +|e1|)(x1∗− p1 · x2 +|e1|)= (|e1|)2

The payoff function has two notable features. First, the payoff decreases in a concave

manner when |x1 − p1 · x2| > 0. Second, the slope of the function when x1 − p1 · x2 > 0 is

different when x1 − p1 · x2 < 0. Due to the asymmetric concavity of the payoff function, a

point-wise prediction is distinguished from an interval-wise prediction. That is, the sub-

ject who uses a point-wise prediction would choose differently from someone who uses

the interval prediction of which mean happens to be the point-wise prediction. For ex-

ample, suppose that player 1 has p1 = 1.5 and [a1,b1] = [100,900]. Consider two cases

in which (1) player 1 believes that player 2 plays exactly 300 and (2) player 1 has a be-

lief that player 2’s choice is uniformly drawn from an interval [100,500]. In the former

case, player 1 may choose 450 to capture p1 · x1 = 1.5×300. In the latter case, player 1

may choose 50(
p

205−4) ' 515.89 to best-respond to his own belief. Costa-Gomes and

Crawford (2006) (henceforth CGC) adopted a kinked linear function that imposes differ-

ent linear slopes at two different intervals. Even though they avoided a simple linear

function, they could not distinguish the choice made by the point-wise prediction from

that made by the interval-wise prediction. In CGC, two different predictions lead to the

same choice of 450.10 Imposing an asymmetric concavity on the payoff function could be

useful means of avoiding those two belief structures. Second, we normalize the payoff

function by using the difference between the largest possible prediction e1 and the small-

est possible prediction e1. This normalization helps subjects attain similar amounts of

payoffs in every game. Since each game has a different choice interval, the extent of

the prediction error also can vary across games. The normalization adjusts the unit of

10Distinguishing the point-wise prediction from the interval-wise prediction is a sensitive issue as far as
the iterated dominance model is considered. In both the Lk and the CH models, the L1 strategy could be
based on the interval-wise prediction if we assume that players who adopt the L1 strategy believe that the
L0 player plays randomly over the interval. On the other hand, the point-wise prediction is different in
the respect that the arbitrary belief anchors on a certain point in the interval. Consequently, separating
these two cases provides evidence that usefully confirms that individuals develop their predictions based
on the belief that L0 players exist.
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payoffs so that the extent of payoff loss from the prediction error will be measured in a

less heterogeneous manner.

A.2.2 Statistical Model Specification

In the SDM experiment, we focus on the identification of the individual strategy

with respect to the mixing propensity, which requires the estimation of an individual

strategy and the mixing propensity type, respectively. For this reason, the estimation

was conducted through a two-layer process.

In the first layer, we fix the individual mixing propensity k among four types (RO,

PM, UM, and HM). Then, given the fixed individual type, we guess a type-specific strat-

egy si(k) of subject i with respect to such a fixed type. We allow multiple type-specific

strategies. In the next subsection we discuss how we can guess the type-specific strate-

gies from the actual data. Having obtained such a set of strategies S i(k), we then use

the maximum likelihood method to estimate the probability distribution of likelihood for

each strategy. From the result of the estimation, we pick the most probable type-specific

strategy si∗(k) for type k.

In the second layer of the estimation, we collect the most probable type-specific strate-

gies for each type k and define such set of four type-specified strategies S i∗ ≡ {si∗(RO), si∗(PM), si∗(UM), si∗(HM)}

as a set of types for the second layer. Among those four types of S i, we use the maximum

likelihood method to estimate the most probable type.

Let ai
j,l and bi

j,l denote subject i’s lower and upper bounds in round l of set j respec-

tively. xi
j,l is subject i’s unadjusted guess in round l of set j. Considering that xi

j,l may be

constrained by these bounds, we define an adjusted guess R(xi
j,l)≡min{bi

j,l ,max{ai
j,l , xi

j,l}}

that restricts the actual choice into the interval of the bounds in each round. We define

a target guess for an individual with type s in round l of set j as ts
j,l . Since our experi-

ments allow subjects to choose integer values only, T i,s
j,l ≡ [ts

j,l−0.5, ts
j,l+0.5]∩[ai

j,l ,b
i
j,l] is

a target bound for the adjusted guess of individual i with type s in round l of set j. That

is, T i,s
j,l restricts the choosable bound around the exact target ts

j,l with respect to a small

possibility of error (±0.5). Since we assume that all subjects can find the correct guess by

using the calculation panel, we only allow a very narrow range around the exact target

guess.

εs ∈ [0,1] is a type-specific error rate of the adjusted guess and ds(R(xi
j,l),λ) is an

error density of an individual with type s, with a precision level λ for the adjusted guess

in round l of set j. For precision level λ, we assume that λ is the same across the sets

and rounds. We also assume that εs is identically and independently distributed over all

the rounds.

P i
j,l(x|y) is subject i’s payoff from his own guess x, given his partner’s guess y in round
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l of set j. From this payoff, we define the expected payoff of an individual with type s in

round l of set j as P i,s
j,l (x):

P i,s
j,l (x)≡

∫ bi
j,l

ai
j,l

P i
j,l(x|y) f s

j,l(y)d y

where f s
j,l(y) is a density of y distributed according to the belief of type s.

We assume a “spike-logit” shape of error.11 Given this assumption, ds(R(xi
j,l),λ) is

defined as :

ds(R(xi
j,l),λ)=


exp[λP i,s

j,l (R(xi
j,l ))]∫

[ai
j,l ,b j,l ]\Ti,s

j,l
exp[λP i, s

j, l (z)]dz
for R(xi

j,l) ∈ [ai
j,l ,b j,l]\T i,s

j,l

0 for R(xi
j,l) ∈ T i,s

j,l .

We denote ni,s
j as the number of rounds that subject i with type s plays the exact

guess of type s in set j. N i,s
j is a collection of such rounds in set j. We denote vectors

xi
j ≡ (xi

j,1, xi
j,2, · · · , xi

j,5) as the guesses of subject i and R(xi
j) ≡ (R(xi

j,1),R(xi
j,2), · · · ,R(xi

j,5))

as the adjusted guesses of subject i in set j.
Considering that individual i with type s chooses the (adjusted) guess R(xi

j,l) with

probability 1−εs, we have a sample density for R(xi
j,l) in set j, denoted by ds(R(xi

j),ε
s,λ)

as follows:

ds(R(xi
j),ε

s,λ)≡ (1−εs)ni,s
j (εk)5−ni,s

j
∏

l∉N i,s
j

ds(R(xi
j,l),λ).

Similarly, we define R(xi) ≡ (R(xi
1),R(xi

2), · · · ,R(xi
8)) as subject i’s adjusted guesses

for the entire experiment and ds(R(xi),εs,λ) as a sample density function for the entire

experiment :

ds(R(xi),εs,λ)≡
8∏

j=1
ds(R(xi

j),ε
s,λ).

Now we define zi,s
j as an indicator of type s for subject i, where zi,s

j = 1 if the subject

is of type s and
∑

s∈S zi,s
j = 1. ε ≡ (εs)s∈S is a vector of error rates for all types and zi

j ≡
(zi,s

j )s∈S is a vector of type indicators in set j. From these definitions, we have subject i’s
log-likelihood function L(zi

j,ε,λ|R(xi
j,l)) as follows:

11We share the assumption of Costa-Gomes and Crawford (2006) regarding the distribution of error:
Each subject is assumed to have an exact choice within her target bound (i.e., T i,s

j,l ) with probability 1−ε.
Outside her target bound, the distribution of error follows a logistic distribution with a precision level λ. As
a result, the shape of her error rate will be like a spike (or a plateau) with a peak within her target bound.
The use of the calculation panel reduces the possibility of error that purely comes from miscalculation.
Moreover, through rounding, we allowed the range of exact choice to include the closest integer.
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L(zi
j,ε,λ|R(xi

j,l))≡
∑
s∈S

zi,s
j ln

[
ds(R(xi),εs,λ)

]
.

A.2.3. Strategy Elicitation by Type

We use actual choice data from the SDM experiment to guess the possible set of spe-

cific strategies per type from the ODM experiment. Unlike the ODM experiment, the

SDM experiment does not provide explicit avenues of belief formation that individuals

are expected to follow. The RO-type subjects, who might use a single action for the

whole experiment, are relatively easy to identify. On the other hand, identifying the

other types—the PM, UM, and HM types—requires that we find not only strategies that

subjects use but also the mixing proportion among those strategies. This consideration

requires, in theory, that we try an infinite number of different mixing proportions with

different strategies. For example, a PM-type subject who adopts the L1 strategy and the

L2 strategy with a mixing proportion 0.75 and 0.25 and another PM-type subject who

adopts the L1 and L2 strategies with a mixing proportion 0.50 and 0.50 should be clas-

sified as different types. To avoid this difficulty, we restrict our attention to a limited set

of strategies. To this end, we exploit the actual choice observations to guess the probable

strategies and the mixing proportion among them by individuals.

- Rational Optimizer (RO) type
RO-type subjects always have a fixed set of type-specific strategies: RO-L1-type sub-

jects are expected to always choose the L1 strategy, RO-L2-type subjects are expected

to always choose the L2 strategy, and so on. Since we restrict our attention to only

four strategies (L1, L2, L3 and NE), this assumption restricts the set of the RO-type

subjects’ strategies. That is, we construct the strategy set for RO-type subject i as

S i(RO)= {RO−L1,RO−L2,RO−L3,RO−NE}. From four strategies, we find the specific

strategy si∗(RO) ∈ S i(RO) that maximizes the likelihood.

In each round of the sets, RO-type subjects are supposed to play a certain action that

corresponds to their optimal strategy. For example, the RO-NE-type subject would play

the NE strategy in each round. While most rounds allow different strategies, Games

δn3γn3 and γn3δn3 share the same numbers for different strategies. In Game δn3γn3,

the L2 player and the NE player can play the same choice 550, and in Game γn3δn3, the

strategy type for a subject who chooses 500 would not be distinguished. To distinguish

them, we need to rely on the records from the calculation panel. In Game δn3γn3, an

L2 player would use the calculation panel to calculate an L1 partner’s choice, 500, and

then, by putting 500 into his own calculation panel, he would learn that 550 is the best-

responding choice. An NE player, to get 550, may start by calculating his own choice
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Game RO–L1 RO–L2 RO–L3 RO–NE

αn2βn4 419.4 361.1 440.3 500

βn4αn2 515.9 629 541.8 750

δn3βn1 678.3 363.9 373.1 300

βn1δn3 330.8 339.2 181.9 150

βn1βn2 350 173.9 122.5 100

βn2βn1 347.8 245 121.75 100

δn3γn3 300 550 363 550

γn3δn3 500 330 500 500

Table 13: Predicted patterns of play in the SDM experiment for RO-type subjects

for the L1 strategy and have 300 from the initial calculation. Also, an NE player may

repeatedly use (more than 3 times) the calculation panel to arrive at the NE strategy.

(2) Probability Matcher (PM) type
To identify the strategies of PM-type subjects, we need to specify not only strategies

but also the mixing proportion among the strategies. In the case of the RO type, picking

a certain strategy from the fixed set is enough to allow identification of the type-specific

strategy. However, PM-type subjects may use more than one strategy with respect to

their own belief structure. For this reason, we need to specify both the multiple strategies

they can adopt and the frequency with which those strategies are used. We do so as

follows: To identify (pure) strategies, we restrict our focus to 11 different combinations

of strategies. Since we assume that subjects use only four pure strategies (L1, L2, L3,

and NE), PM-type subjects could have: (i) 6 different combinations of 2-strategy cases:

L1 + L2, L1+ L3, L1 + NE, L2 + L3, L2 + NE, and L3 + NE; (ii) 4 different combinations

of 3-strategy cases: L1 + L2 + L2, L1 + L2 + NE, L2 + L3 + NE, L1 + L3 + NE; and

(iii) one combination of 4-strategy cases. For the purpose of illustration, we consider a

L1 + L2 case described in Table 14. In this example, we describe hypothetical choices

of a PM-type subject who uses L1 and L2 strategies and mixes them with proportion L1

: L2 = 3 : 2. Each two columns describe the actions of each round and corresponding

strategies. The first column shows choices of the PM-type subject of L1 + L2 strategy.

The subject can use either a pure L1 strategy or a pure L2 strategy. The next column

shows the corresponding strategies for each choice. For example, a subject’s action 419.4

(in the first column) in Game αn2βn4 of round 1 corresponds to L1 strategy (in the second

column).
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Probability Matcher with L1(60%)+L2(40%)

Game Round1 Stg. Round2 Stg. Round3 Stg. Round4 Stg. Round5 Stg.

αn2βn4 419.4 L1 361.1 L2 419.4 L1 361.1 L2 419.4 L1

βn4αn2 515.9 L1 515.9 L1 515.9 L1 521.7 L2 521.7 L2

δn3βn1 678.3 L1 363.9 L2 363.9 L2 678.3 L1 678.3 L1

βn1δn3 339.2 L2 330.8 L1 330.8 L1 330.8 L1 339.2 L2

βn1βn2 350 L1 173.9 L2 173.9 L2 350 L1 350 L1

βn2βn1 245 L2 347.8 L1 245 L2 347.8 L1 347.8 L1

δn3γn3 550 L2 300 L1 300 L1 300 L1 550 L2

γn3δn3 330 L2 500 L1 500 L1 330 L2 500 L1

Table 14: An example of a PM-type subject’s pattern of play in the SDM experiment

We first identify the strategies used in each set and then find an average proportion

among them. During this process, we focus on choices that correspond to L1, L2, L3, and

NE strategies. Once we have an average proportion among these strategies, we round

it up/down to be fitted with 5-round setting. In this way, a PM-type subject who uses

different collections of strategies with different mixing proportions can also be classified.

This process is grounded in the assumption that PM-type subjects would keep the same

mixing proportion across the sets for the same collection of pure strategies. This as-

sumption allows us to guess the mixing proportion from an observed average proportion

of choices. From a vector xi ≡ (xi
1, xi

2, · · · , xi
8), we can find the frequency of each choice that

corresponds to each strategy. Then, we use the observed frequency to guess the mixing

proportion.

Specifically, we find at most eight candidates for strategies specified within each set

for PM-type subjects. For example, consider subject i’s choices in set 1, which show the

proportion among each strategy as L1 : L2 : L3: NE = 2 : 1 : 1 : 1. We name a type-

specified strategy that shows the mixing proportion L1 : L2 : L3 : NE = 2 : 1 : 1 : 1 as

‘PM-1.’ Then we compare the actual choices in other sets (set 2–set 8) with this PM-1

strategy. Similarly, suppose the actual choices in set 2 shows L1 : L2 : L3 : NE = 1 : 2 :

1 : 1. Then, we have another type-specified strategy named ‘PM-2’ that has the mixing

proportion L1 : L2 : L3 : NE = 1 : 2 : 1 : 1, and so on. When we apply this approach for

each result in every set, we have at most eight different candidates of mixing strategies

specified for PM-type subjects.

After we construct all of the subject’s possible candidates for mixing strategies, we

calculated the candidate that is most likely to explain the all (at most) eight mixing

strategies candidates. For example, consider the case we labeled ‘PM-1’ as a candidate
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that explains the strategies in set 2. The only difference between the choices in set 1

and those in set 2 is that the subject played L2 one additional time; this would be an L1

play if he was the PM-1 subject, which is counted as deviation from the PM-1 strategy.

By repeating this, we could estimate which type-specific strategy yields the “best fit" for

each PM-type subject.

(3) Uniform Matcher (UM) type
To guess the type-specific strategy for UM-type subjects, we consider the observations

from the entire experiment.12 In contrast to what we did for the PM type, we assume

that UM-type subjects play the same strategy within each set and the strategy changes

across sets. We can easily guess the strategies used in each set. To guess the mixing

proportion, we count the frequency of the strategies from the entire experiment. That is,

we only count all choices played in the experiment (from set 1 to set 5, excluding all non-

RO-type actions). Naturally, the actual mixing proportion is the guess for the mixing

proportion. For example, consider a UM-type subject with strategies L1+L2+NE with

the mixing proportion L1 : L2 : NE = 4: 2: 2. In Table 15, the UM-type subject uniformly

played the L1 strategy in sets 1, 2, 6, and 8, the L2 strategy in sets 4 and 5, and the NE

strategy in set 3 and 7. From this observation, we can guess the collection of strategies

adopted by the subject as L1, L2 and NE. The mixing proportion among the adopted

strategies can be guessed by counting the mixing proportion in the entire experiment.

Uniform Matcher with L1(50%)+L2(25%)+NE(25%)

Game Round1 Stg. Round2 Stg. Round3 Stg. Round4 Stg. Round5 Stg.

αn2βn4 419.4 L1 419.4 L1 419.4 L1 419.4 L1 419.4 L1

βn4αn2 515.9 L1 515.9 L1 515.9 L1 515.9 L1 515.9 L1

δn3βn1 300 NE 300 NE 300 NE 300 NE 300 NE

βn1δn3 339.2 L2 339.2 L2 339.2 L2 339.2 L2 339.2 L2

βn1βn2 173.9 L2 173.9 L2 173.9 L2 173.9 L2 173.9 L2

βn2βn1 347.8 L1 347.8 L1 347.8 L1 347.8 L1 347.8 L1

δn3γn3 550 NE 550 NE 550 NE 550 NE 550 NE

γn3δn3 500 L1 500 L1 500 L1 500 L1 500 L1

Table 15: An example of a UM-type subject’s pattern of play in the SDM experiment

For the actual guess of the possible set of specific strategies for the UM type, consider

12Since no subjects were categorized as the UM type, we did not employ the approach described in this
section. We write this in order to complete the description.

36



the example of a UM-type subject with observed strategies L1 : L2 : L3 : NE = 15 : 10 :

13 : 2. From this observation, we can find the relative proportion of the strategies. How-

ever, we can imagine situations in which the observed frequency of the strategies may

not clearly fit the 8-set setting or in which multiple strategies appear within the same

set. For the former case, we rounded up or down for the proportions that are multiples

of 1/8. For example, when we round up or down the relative proportion L1 : L2 : L3 : NE

= 15 : 10 : 13 : 2 = 0.375 : 0.25 : 0.325 : 0.05, we could have several different approxima-

tions. That is, 0.375 : 0.25 : 0.325 : 0.05 can be rounded up to 0.375 : 0.25 : 0.375 : 0.125,

or to 0.375 : 0.25 : 0.375 : 0. When we have such several different approximations, we

consider the most frequently used strategy in each set to be the major strategy of that

set. For the case that rounds up 0.325 to 0.375 = 3/8 for L1, three sets are required to

uniformly play L1. Then we find three sets in which L1 appears mostly. In these sets,

we count non-L1 choices as deviations from the L1 strategy. Applying this process to all

the other strategies we derive the sample density dUM(R(xi),εUM ,λ).

(4) Hedging Matcher (HM) type
We allow HM-type subjects to choose non-Lk choices, and this relaxation leads us

to another difficulty: whether to consider such choices as a strategic hedging behavior

or not. To address this concern, we exploit two assumptions: (1) Any hedging behavior

should be based on the belief that is comprised of multiple Lk strategies, and (2) any

hedging behavior based on a certain belief should be bounded by the interval formed from

the belief. For example, consider a HM-type subject in game αn2βn4 who has a belief

that her partner may play either the L1 or the L2 strategy with some mixing proportion.

Then, her belief may form a boundary for her hedging choice, and that boundary may

depend on the L1 (419.4) and L2 (361.1) strategies. Given her belief of about L1 and L2,

choosing any numbers outside of the interval formed by 419.4 and 361.1 (in this case,

[361.1, 419.4]) is always a weakly dominated strategy by any number in the interior

of the interval. From these assumptions, we can infer that any HM-type subjects may

choose the number within the interval that is bounded by Lk strategies based on her

belief. This inference, although it allows a range that is broader than that for either

UM- or PM-type subjects, provides grounds for determining whether the subject shows

consistent HM-type behavior. For example, consider an HM-type subject who has in

mind the L1 and L2 strategies. Table 16 shows that all of the choices taken by the HM-

type subject are consistently located in the interval between the L1 and L2 strategies.

This pattern of play can distinguish the HM-type subject from random-playing subjects.

For HM-type subjects, specifying the adopted strategies would be sufficient. In con-

trast to what we did for UM- or PM-type subjects, we focus on identifying HM-type sub-
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Hedging Matcher with L1+L2

Game Round1 Round2 Round3 Round4 Round5 L1 L2

αn2αn4 380 400 415 375 365 419.4 361.1

αn4αn2 516 580 600 550 629 515.9 629

αn4βn1 400 450 650 550 600 678.3 363.9

βn1αn4 332 333 333 338 335 330.8 339.2

βn1βn2 350 180 250 200 300 350 173.9

βn2βn1 250 300 333 325 280 347.8 245

δn3γn3 300 550 350 500 400 300 550

γn3δn3 350 400 500 450 400 500 330

Table 16: An example of a HM-type subject’s pattern of play in the SDM experiment

jects by itself. We consider 6 different combinations of two strategies that result in six

different intervals: L1 + L2, L1 + L3, L1 + NE, L2 + L3, L2 + NE, and L3 + NE. Even

though the range of target guesses is wide, we can identify the consistent choice patterns

made by a HM-type subject. First, every combination of strategies has a unique forma-

tion that depends on the game structure. For example, L1 + NE may have the broadest

range in most of games, but not in games 1 and 8. Therefore, even if a subject who be-

haves randomly may seem to consistently choose the number within the interval in the

L1 and NE strategies, that subject should show consistent deviation in every round of

games 1 and 8. Moreover, the shape of the interval in the game also changes. In games

1, 2 and 7, the choices from the L1 strategy are lower than those from the NE strategy,

while in games 3, 4, 5, and 6 the opposite is true. From this structure, the HM-type sub-

jects with a certain belief needs to know the exact range that will bound his/her optimal

hedging choice. Moreover, the ranges covered by these combinations at most are equal

to or are smaller than half of the entire choice interval. For this reason, the probabil-

ity that a random-behaving subject consistently chooses numbers in a range bounded by

pertinent strategies is negligible.

Appendix B. Experiment Instructions

B.1. The ODM Experiment

Preliminary Survey:
Before you start the actual task, we’d like to ask you to answer three survey ques-

tions. Consider a hypothetical situation where I give you either a fixed amount of money,
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X, or a simple lottery ticket. You can choose only one. The lottery ticket, denoted by

(W , p), gives you money W with probability p, or nothing with probability 1− p. For ex-

ample, ($100,0.4) is a lottery ticket that gives you $100 with a probability 0.4, or nothing

with a probability 0.6. We want you to compare lottery tickets with fixed amounts of

money.

[Three questions asking certainty equivalences of ($10,0.5), ($1,0.3), and ($1,0.7),

respectively, are followed.]

Important Preliminary: “. . . randomly drawn from a probability distribution??"
We want you to understand what we mean by “an event is randomly drawn from

a probability distribution." A probability distribution is a description of possible events

and their chances. For example, if you toss a fair coin, with a 50% of chance it will land

heads (H) and with another 50% of chance it will land tails (T). Here the possible events

are the faces of a coin, H and T, and the corresponding chances are 0.5 each. Then the

probability distribution of coin tossing can be described as (H,0.5; T,0.5). When we say

“an event (here, the face of a coin) is randomly drawn from (H,0.5; T,0.5)," wee mean

that we toss a coin and either H or T is realized, but we will not tell you what the actual

realization is.

Here is another example. If we say “an event is randomly drawn from (L,0.2; C,0.5;

R,0.3)," then it means three things. First, an event L (,C or R) will be drawn with a 20%

(, 50% or 30%) of chance, respectively. Second, one event among L, C and R is realized

according to their chances. Third, we will not tell you what the realization is.

During this experiment, you will frequently read “an event is randomly drawn from

a probability distribution" in various contexts. We will assume now that you completely

understand the meaning of the sentence. Please raise your hand if you need further ex-

planation.

Description of Games:
Your task is to make choices to earn points from several games. One point is equiv-

alent to 25 cents. The specific form for each game will vary, but it will similarly be

described as the following payoff matrix.

H, 0.3 T, 0.7

U 1 0

M 0.15 0.35

D 0 1
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Your options will be shown on the left (U, M, and D, in this example). A probability

distribution will be on the top (H,0.3; T,0.7). The matrix shows your payoff. For example,

if you choose M and event H is randomly drawn from the probability distribution, you

will earn 0.15 points. If you choose D when event T is drawn, you will earn 1 point.

Here is another example. Suppose another game is described as the following matrix.

L, 0.5 C, 0.3 R, 0.2

U 1 0 0

M 0 1 0

D 0 0 1

B 0.25 0.15 0.1

In this example, your options are U, M, D and B, and the event will be L with a proba-

bility 0.5, C with a probability 0.3, or R with a probability 0.2. For example, if you choose

B when event L is drawn, you will earn 0.25 points. If you choose U when event C is

drawn, you will earn 0 points.

Structure of Experiment:
The experiment consists of 4 sessions. In each session you will play a game several

times. Your available actions, a probability distribution over events, and payoffs will be

informed.

Each session consists of 4 sets. In the beginning of each set, an event is randomly

drawn from the probability distribution. Given this event, you will make choices for four

rounds of the set. Note that the realized event will be unknown during those rounds. In

the beginning of the next set, another event is newly drawn from the same probability

distribution. You will make another four choices, and so on.

Since a session consists of four sets and you have four rounds per set, one session runs

16 rounds. In a new session you will repeat the process with a new game that consists

of new available actions, a new probability distribution, and new payoffs. It is important

for you to understand how a session and a set are defined because in each session all

16 rounds look the same. For the first 4 rounds (i.e., the first set), the realized event is

the same. For the next 4 rounds (i.e., the second set), an event is newly drawn and the

realized event is the same.

Screening Test:
After you read the instructions, you will answer three multiple choice questions to

check your understanding of the instructions. You may want to go back to review or
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ask an experimenter for help. You can participate in the experiment only if ALL of your

answers are correct. The main purpose of this screening test is to help you understand

the instructions, not to cause you any stress. It is okay for you to ask an experimenter to

help you if you are in doubt.

Q1. The experiment will consist of (A) sessions. In each session, you will have (B) sets.

In each set, you will play (C) rounds of game. What are the appropriate numbers

in (A), (B) and (C)?

Q2. A game is described as the following matrix. [A matrix is displayed] Which of the

following is true?

Q3. Suppose a probability distribution over events is (L,0.3; C,0.5; R,0.2). Which of the

following is NOT true?

B.2. The SDM Experiment

General description:
This experiment consists of 8 sets, and each set consists of 5 rounds of decision mak-

ing.

In each set, you are randomly matched to one experiment participant in this lab. You

will play with your match for the set (5 rounds). In the next set, you will be matched to

another participant. You will not know who your matches are, and your matches will not

know you either.

In each round, you choose an integer in a certain range (e.g., between 100 and 300).

You earn more when your number is closer to a certain target number (e.g., 0.7) times

your match’s actual choice. Your match will do the same task, but his/her range and

target may be different.

Example:
Suppose that in the first set you choose a number between 0 and 300, your match

chooses a number between 100 and 500, your target is 0.5, and your match’s target is

1.1. If your match chooses, say, 200, then your payoff is maximized when you choose 100

because your target (0.5) times the match’s choice (200) is 0.5*200 = 100. On the other

hand, if your match believes that you will choose 100, then she would choose 110 because

her target (1.1) times your choice (100) is 1.1*100 = 110.

Payoff:
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Showing you the formula calculating the payoff is overkill: Because the components

of the game (i.e., your range and target, and your match’s range and target) change in

every set, the formula contains some messy mathematical normalizations and adjust-

ments. Instead, we provide a calculator for you. Details will follow.

For now, please remember that your payoff is larger the more accurately you guess

your match’s choice. The calculation panel will do the remainder. If your choice is exactly

the same as the ‘ideal choice’ (= your target * the match’s choice), you will earn 25 cents

for the round. The greater the difference between your choice and the ideal choice, the

smaller you earn. The worst choice may give you 0 cents for the round.

Calculation Panel:
We want you to guess your match’s choice, but we do not want you to feel mathemat-

ically burdened. We provide a calculation panel. We highly recommend that you rely

on the panel. If you input your guess about your match’s choice, then the calculation

panel outputs your ideal choice. Also, if you input your choice, then the calculation panel

outputs your match’s ideal choice.

You can use the calculation panel as many times as you want. Check the following

screen-shots. You may also use paper and pencil to write down the past results of your

calculation. The paper will be wasted anonymously. Your usage of the calculation panel

and paper will not affect your payoff.

Screenshot 1 [Set 1, Round 1]: To use the calculation panel, click the button indicated.
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Screenshot 2 [Calculation Panel (1)]: If you want to know what you should choose, input

your guess, and click ‘Calculate’ button. Similarly you can calculate what your match

would choose.

Screenshot 3 [Calculation Panel (2)]: You can use this calculation panel as many times

as you want. Note that it is okay to input the same number in the form of the range. (See

the green circle above.)
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Structure of the Experiment:
Again, this experiment consists of 8 sets. In the first set, you will play a game with a

match for 5 rounds. In the next set, you will play another game with another match for

five rounds, and so on. Even though the game will be the same for the five rounds within

a set, we do not know whether your match will make the same choice for all five rounds.

Screening Test:
You will answer four multiple choice questions to check your understanding of this

instruction. You may want to go back to review, or ask an experimenter for help. You can

participate in the experiment only if ALL of your answers are correct. The main purpose

of this screening test is to help you understand the instructions, not to cause you any

stress. It is okay for you to ask an experimenter to help you if you are in doubt.

Q1. The experiment will consist of (A) sets. In each set, you will make (B) rounds of

decision-making. What are appropriate numbers in (A) and (B)?

Q2. Suppose that your range is [100,500], your target is 0.5, your match’s range is

[100,900], and the match’s target is 1.1. Which of the following is NOT true?

Q3. You play a game with a match for five rounds. Which of the following is true?

Q4. Suppose that you somehow guess that your match will pick any number between

200 and 500. Use the part of the calculation panel below and choose what you

should choose. [The calculation panel is provided.]
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