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Abstract

This paper studies infinite-horizon sequential bargaining among n ≥ 3 players

in which a proposer is randomly selected from the pool of potential proposers. If

the proposal is rejected, the current and previous proposers are excluded from the

pool of potential proposers, and the game moves on to the next round until every

player has had the same number of opportunities to be the proposer. To analyze

the model with a particular time dependency within each sequence of n rounds

(a cycle,) I characterize the stationary equilibrium of a stochastic game, which I

call cycle-stationary subgame perfect (CSSP) equilibrium. The CSSP equilibrium

is unique in payoffs and analogous to the subgame perfect equilibrium of some

forms of finite-horizon bargaining. Even when every player is entirely patient, the

proposer’s share in the CSSP equilibrium is smaller than that predicted by the

stationary equilibrium of the Baron–Ferejohn legislative bargaining model.
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1 Introduction

Multilateral bargaining is a political process in which many agents with conflicting

preferences try to divide an economic surplus (“pie”) under pre-specified voting rule and

procedure. The process can be summarized as follows: One member of the group pro-

poses a division of the pie, and the proposal is voted on. If the proposal is agreed to by

a predetermined number of members, the division is implemented. It is well-understood

that proposer power is a significant source of bargaining strength. The standard frame-

work, developed by Baron and Ferejohn (1989), henceforth BF, assumes that players are

randomly recognized as a proposer where the recognition probabilities are i.i.d. Such

a framework permits, with a positive probability, for the same player to propose many

times before others have had a chance. I study a different bargaining protocol, where no

player can propose more than twice until every other player has had the same number

of opportunities to propose. The main contribution of this paper is to characterize a

stationary subgame perfect equilibrium behavior in this bargaining protocol.

It is worth noting why the literature on legislative bargaining maintains the idea of

random recognition and stationary strategies. One theoretical feature of the BF model

is that in their infinite-horizon game, virtually any distribution of feasible payoffs can

be supported in equilibrium.1 Consequently, it was natural to restrict attention to a

particular set of strategies, that is, stationary (history- and time-independent) strategies.

In order for a stationary strategy to constitute an equilibrium, all rounds in the infinite-

horizon game should be structurally equivalent. The random recognition process, wherein

each round the proposer is recognized at random by a chairperson, implies structural

equivalence. It is known that under the random recognition process, the uniqueness

of stationary equilibrium payoffs is guaranteed for a broader set of generalized models

(Eraslan, 2002; Eraslan and McLennan, 2013). The literature has adopted the random

recognition process,2 not only because it is a necessary condition to enjoy the theoretical

luxury of yielding predictions regarding the stationary equilibrium, but also because the

random recognition process can be understood and naturally interpreted as a fair-minded

chair’s tool to guarantee ex-ante fairness.3

1See Proposition 2 of Baron and Ferejohn (1989), which can be understood as an example of a class
of results known as “folk theorems” (Austen-Smith and Banks, 2005).

2Banks and Duggan (2000), Diermeier and Merlo (2000), Jackson and Moselle (2002), Norman (2002),
Eraslan (2002), Snyder et al. (2005), Battaglini and Coate (2007), and Volden and Wiseman (2007) are
theoretical studies that adopt the random recognition process to address different issues in regard to
political decisions. This list is not complete, and it would be even longer if it included experimental
studies whose main purpose is to test theoretical predictions made under the assumption of random
recognition. For extensive review, see Eraslan and Evdokimov (2019).

3In the general case, not all members have the same probability of being recognized by a chairperson.
For example, senior members are more likely than junior members to be recognized as a proposer. Even
with unequal recognition probabilities, randomness plays an essential role in capturing the tensions
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In this paper, I consider random recognition without replacement as a proposer se-

lection process. If the proposer selection process can be understood as sampling from

a population, the protocol used in the BF model is random sampling with replacement.

Admittedly, there has been an apparent gap between what multilateral bargaining the-

ory assumes and what is known to occur in practice: Previous proposers are not likely

to be a proposer again. The random recognition process (with replacement) allows the

current proposer to be recognized again in the next round. That is, ex-ante fairness does

not guarantee ex-post fairness. However, if theoretical analysis aims to help us under-

stand actual multilateral bargaining within social groups, then it would make more sense

to assume that the chair does not allow one legislator to propose consecutively, or at

least does not allow a legislator to make his/her next proposal until all members have

been granted the same number of opportunities to make proposals. Random recognition

without replacement is fairer in the ex-post sense. Moreover, the idea of random recogni-

tion without replacement as the proposer selection process is closely related to the “one

bite at the apple” principle that is often explicitly considered in legislative and judiciary

processes. This principle means that each individual/agent/party has only one chance

to take advantage of an opportunity.4 In the case of an opportunity to be a proposer,

the random recognition process without replacement accurately captures the “one bite

at the apple” principle: Members who are recognized as proposers (members who have

already “bitten at the apple”) cannot again be a proposer (cannot take another bite)

until everyone has bitten at the apple once.

Specifically, I consider a sequential multilateral bargaining model in which, within

a given session of the legislature, if a randomly selected member proposes in the first

round and her proposal is not accepted, she will not have another chance to propose until

everyone else has proposed once. If the legislature has n members, then in the second

round the other n−1 members have an equal chance to be recognized, in the third round

(if the proposal in the second round fails) the remaining n − 2 members have an equal

chance to be recognized, and so on. I call a sequence of n rounds of proposals a cycle, as

it expresses that the opportunity of being a proposer is equally distributed among all the

between the proposer and nonproposers. If, on the other hand, the order of proposers is determined
prior to the bargaining (Breitmoser, 2011) or some members who will not be the proposer in the next
round of bargaining are indicated (Ali et al., 2019), then the outcome of the bargaining depends largely
on such deterministic information.

4The rules of the House of the Representatives state that “it is an important tool that ensures that
the minority gets at least one chance, one bite at the apple, so that 100 million Americans represented
by Members of the minority here can be heard.” (Congressional Record—House, January 6, 2009, page
H18) Politicians are well aware of this notion. Although the expression “one bite at (of) the apple”
may be a jargon used only in particular situations, the expression appears in the online Congressional
Records 49 times as of July 2019, which are as frequent as some widely-known three-word jargon such
as “third-party candidate,” (48 times), “smoke-filled room” (64 times), and “pork-barrel politics” (70
times).
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members. In other words, everyone bites at the apple exactly once in every cycle. Every

member is reinstated to the pool of potential proposers at the end of each cycle.

I characterize the stationary subgame perfect equilibrium of legislative bargaining

under random recognition without replacement for a q-quota voting rule. I consider the

number of players eligible to be selected as a proposer as a state and utilize the fact that

the state is repeated per cycle. For infinite-cycle bargaining, where the state-dependence

of stationary strategies is repeated per cycle, I introduce cycle-stationarity, characterize

the cycle-stationary subgame perfect (CSSP) equilibrium, and show the CSSP equilibrium

is unique in payoffs. That equilibrium has the following four properties, where the first

two are similar those yielded by the standard BF model, and the latter two are different:

(1) The first proposer’s equilibrium strategy is to offer x to each of q − 1 randomly

selected players, and to keep the remaining share, 1 − (q − 1)x, for herself, where q

is the qualified number of votes for acceptance of the proposal. Such x is between δ
n
,

the stationary subgame perfect equilibrium offer in the BF model, and δ
n−1 , the subgame

perfect equilibrium offer in one-cycle (n-round) finite-horizon bargaining in which random

recognition without replacement is adopted as the proposer selection rule, where n is the

size of the legislature, and δ is the common discount factor. (2) The cycle-stationary

subgame perfect equilibrium also predicts that delay does not occur. The minimum

winning coalition and no delay in equilibrium are the same as in those for the Baron–

Ferejohn equilibrium. (3) Even if the players are entirely patient, or there is no penalty

for delay, that is, if δ = 1, the difference in the proposer’s share still exists. The proposer

will have the largest share in the BF model and the smallest share in one-cycle bargaining

under random recognition without replacement. (4) On the out-of-the-equilibrium path,

the previous proposers within a cycle are maltreated, not because the current proposer

retaliates them for the loss of the surplus due to delay, but because the previous proposers

are “cheaper” than other players.

The rest of the paper is organized as follows. In the following subsection, I discuss

the related literature. Section 2 describes the model. Section 3 characterizes the sub-

game perfect equilibrium for a finite-horizon (n-round) legislative bargaining process as

an illustration of infinite-cycle bargaining. In Section 4 I describe the cycle-stationary

subgame perfect equilibrium for an infinite horizon and establish the uniqueness of the

equilibrium payoffs. In Section 5 I discuss asymmetric coalition formation strategies and

compare the equilibrium strategy of my model with that of the BF model. Section 6

concludes. All proofs of the lemmas and propositions are provided in the Appendix.
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1.1 Related Literature

This paper contributes to the multilateral bargaining literature theoretically. With

deviating from the random recognition process with replacement, the literature has con-

sidered endogenous proposer recognition processes and direct modification of the recog-

nition process.

Modification of the random recognition process was considered by Breitmoser (2011),

who considers a model allowing for priority recognition of some committee members;

Bernheim et al. (2006), who focus on recognition orders where no individual is recognized

twice in succession for pork barrel policies; and Ali et al. (2019, , henceforth ABF), who

assume that some players can be ruled out as the next proposer. It is worth comparing this

study with ABF because both ABF and this paper assume a specific form of predictability

about the future proposers, while ABF predicts a much stronger power of the current

proposer than what I claim in this paper. In my model, the current proposer has the most

bargaining power now, but she has the least bargaining power in the next round because

she has to wait at least n periods before having another opportunity. Being the weakest

player in the next round implies that she has to make a more attractive offer to coalition

members because the nonproposers have a higher continuation value than she does. By

contrast, the predictability condition in ABF ensures that the proposer is never weaker

than at least q − 1 other players for any round, and this leads to the equilibrium where

the first proposer captures the entire surplus. I view their study as being complementary

to mine. Both ABF and this paper illustrate that the proposer recognition procedure

significantly affects equilibrium outcomes.

This paper implicitly considers endogenous proposal power, as the recognition pro-

cess without replacement gradually endows a higher probability of being a proposer to

those who have not proposed yet. Endogenous bargaining power has been considered by

Yildirim (2007), who studies a sequential bargaining approach in which the probability

that a given agent will be recognized as a proposer is proportional to the ratio of that

agent’s level of effort to the aggregate effort of all agents;5 Ali (2015), who adopts the

all-pay auction as a proposer selection protocol; Eguia and Shepsle (2015), who study re-

peated legislative bargaining in which an assembly chooses its bargaining rules after each

legislative term; Diermeier et al. (2016), who model policy-making procedures where

the outcomes of prior bargaining endogenously determine players’ proposal power. In

the context of bilateral bargaining, Board and Zwiebel (2012) also consider endogenous

proposal power.

5Evans (1997) also assumes that recognition probabilities depend on the players’ effort levels but
considers a different game, where the members of the coalition that accepts a proposal leave the game
and the remaining members continue to the next round. Cardona and Polanski (2013) analyze a rent-
seeking contest that determines proposal power in the subsequent policy-making bargaining procedure.
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Since random recognition without replacement is implicitly concerned about ex-ante

fairness toward other legislators in terms of proposer opportunities, this study goes in

the direction opposite that of studies which considered a persistent agenda-setter, such

as Diermeier and Fong (2011) and Jeon (2016).

2 The Model

Consider a legislature consisting of n members indexed by i ∈ {1, 2, . . . , n} ≡ N ,

where n is an odd number greater than or equal to 3. The legislature decides how to

allocate a fixed economic surplus (normalized to 1) among themselves. In round 1, one

of the members is randomly selected to make a proposal, and all the members have equal

probability of being selected. The proposal is immediately and simultaneously voted on.

If the proposal is supported by the predetermined q-quota voting rule (i.e., at least q

members vote for it),6 the game ends and payoffs accrue according to the proposal. If,

on the other hand, the proposal is not supported by at least q members, the process is

repeated in round 2, but the new proposer is selected at random from all the members

except the first proposer. The recognition probability is proportionally updated, that

is, the recognition probability of every player who is in the running in round 2 is 1
n−1 .

Delay is costly: In each round the utility is discounted by a common factor δ ∈ [0, 1].

Formally, in round t ∈ {1, 2, . . .}, a randomly recognized player makes a proposal pt,

where pt is a distribution plan (pt1, . . . , p
t
n) such that

∑n
i=1 p

t
i = 1 and pti ≥ 0 for all i ∈ N .

If the proposal is supported by at least q players, including the proposer in round t, then

the game ends and player i receives δt−1U i(pt), where U i(pt) is member i’s undiscounted

utility from the approved proposal pt. Players are assumed to be risk neutral and self-

interested, so U i(pt) = pti. As is typical in the literature, I assume that a player votes

for a proposal when she is indifferent between voting for it and voting against it. If the

proposal in round t is not approved and (t mod n) (the remainder in the division of t

by n) is strictly greater than 0, then the proposer is excluded from the pool of potential

proposers, and the game goes on to round t + 1. If the proposal is not approved and

(t mod n) = 0, then every member is reinstated to the pool of potential proposers, and

the game goes on to round t + 1. This process continues until a proposal is eventually

supported by at least q members. If no allocation is ever accepted, each player receives a

payoff of 0. In the sense that all the members propose once in rounds 1 through n, once

in rounds n+ 1 through 2n, and so on, I call such a sequence of n rounds a cycle. Since

this process could continue for infinitely many rounds, I call it infinite-cycle bargaining.

Let S denote the set of all nonempty subsets of N , and st ∈ S denote the set of

6The simple-majority rule is the n+1
2 -quota rule, and the unanimity rule is the n-quota rule.
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eligible players for recognition in round t. That is, st describes a part of the history

at round t.7 Let {ati(st), xti(st)} denote a feasible action for player i in round t, where

ati(h
t, st) ∈ ∆(P ) is the (possibly mixed) proposal offered by player i as the proposer

in round t and xti(h
t, st) is the voting decision threshold of player i as a nonproposer in

round t; P = {(p1, p2, . . . , pn) ∈ [0, 1]n|
∑n

i=1 pi = 1} is the set of feasible proposals and

∆(P ) is the set of probability measures on P . A strategy σi is a sequence of actions

{ati(st), xti(st)}∞t=1, and a strategy profile σ is an n-tuple of strategies, one for each player.

One of the typical solution concepts adopted for the infinite-horizon multilateral bar-

gaining game is the stationary subgame perfect (SSP) equilibrium. In the BF model, the

stationary strategy is defined as a time- and history-independent strategy on a singleton

state, that is, a strategy is called stationary if {ati(st), xti(st)} = {ai, xi} for any t and st.

Note that st = N for any t, that is, the state space is a singleton. This particular type of

stationary strategies, with the assumption of random recognition with replacement, does

not cause any issue to characterize the stationary equilibrium because each subgame is

structurally equivalent to its supergame. Such a structural equivalence per subgame is

guaranteed in the BF model.

I also focus on stationary strategies. Unlike the BF model, however, the infinite-

cycle game is a stochastic game with a non-singleton state space. I utilize the fact

that the number, not the identities, of players eligible to be a proposer is repeated per

cycle. One stationary strategy could be defined in the following manner: A strategy

is stationary if {ati(st), xti(st)}∞t=1 = {ai(sτ ), xi(sτ )}nτ=1, where τ = (t mod n), that is,

the stationary strategies are dependent to the round number within a cycle and the

information about who are eligible to be a proposer for the remaining rounds of the cycle.

I call the #(st)-dependent stationary strategies as cycle-stationary strategies because

#(st) = #(st
′
) = #(sτ ) for any t and t′ such that (t mod n) = (t′ mod n) = τ . A strategy

is said to be cycle-stationary subgame perfect (CSSP) if it is both cycle stationary and

subgame perfect. It is important to note that #(st) = #(st
′
) does not necessarily imply

st = st
′
, and this means that the cycle-stationary subgame-perfect strategies, defined in

an identity-free manner, are symmetric.8 That is, given st, σi = σj for all i and j. Unless

otherwise specified, we consider symmetric strategies.

7The history contains the identities of the previous proposers, the previous proposers’ proposals, and
the number of players who voted for each of them. However, for the characterization of the stationary
equilibria only st matters.

8Asymmetric coalition formation strategies will be discussed in Section 5.1. Asymmetric cycle-
stationary strategies cannot be subgame perfect, and asymmetric subgame-perfect strategies cannot
be cycle-stationary.
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3 An Illustration: One-Cycle Bargaining

Before examining infinite-cycle bargaining, I consider a simpler game to illustrate the

basic features of the model. Specifically, I consider 5-person 5-round bargaining under a

simple majority rule and a unanimity rule, where the game ends either when a proposal

is accepted before round 5 or when no proposal wins by the end of round 5. In the latter

case payoffs are 0.

First, consider a simple majority rule. Since there is a final round with a strictly

dominant strategy, I use backward induction.

� The last-round proposer keeps everything because it is the last round.

� The round-4 proposer keeps everything because there are three previous proposers,

who lost their bargaining power, would accept every offer. They do not have an

incentive to reject the current offer of zero because they will get zero in the last

round too.

� The round-3 proposer keeps everything because there are two previous proposers.

The logic is analogous to one in round 4.

� The round-2 proposer offers zero to the first-round proposer, offers to one of those

who have not proposed yet δ 1
3
, which is the expected payoff of moving on to the

next round, and keeps the remainder, 1− δ
3

for herself.

� The round-1 proposer randomly picks two members, offers them δ 1
4
, and keeps the

remainder 1− δ
2

for herself.

Therefore, the subgame-perfect equilibrium outcome is that the first-round proposer

offers δ
4

to two members and keeps the remainder, 1− δ
2

for herself.

In this equilibrium, the first-round proposer does not necessarily choose the coalition

members with uniform probability. That is, other asymmetric coalition formation strate-

gies could construct another subgame-perfect equilibrium with the same payoff. Suppose,

for example, players coincidentally agree on the pre-specified asymmetric coalition for-

mation pattern such that player i always selects players (i+ 1 mod 5) and (i+ 2 mod 5)

as her coalition partners. From the perspective of the non-proposers, this coalition for-

mation guarantees a uniform probability of being a coalition member in round 1, so the

expected payoff is the same in equilibrium. One can similarly construct non-uniform

coalition formation strategies that lead to the essentially unique equilibrium in payoffs.

However, any asymmetric coalition formations in which players favor some players over

others throughout the entire game are not subgame perfect: Whomever the proposer
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in the second round is, that player would have an incentive to deviate from the coali-

tion strategy. When player 1 was the first-round proposer, and player 2 becomes the

second-round proposer, for example, player 2 is better off by offering zero to either one

of players 3 and 4. Although it is rather trivial in this one-cycle bargaining illustration,

a key characterizing the subgame-perfect equilibrium is to distinguish who has proposed

from who has not. To summarize, asymmetric coalition strategies can be used in round

1 where there is no need to distinguish who has proposed from who has not, but those

cannot be maintained from round 2.

Under the BF model, that is, with the assumption of random recognition with re-

placement, the symmetric subgame-perfect equilibrium outcome is that the first-round

proposer offers δ
5

to two randomly selected member, and keeps the remainder, 1 − 2δ
5

for herself, which coincides with the stationary subgame-perfect equilibrium in infinite-

horizon bargaining.

Next, consider a unanimity rule. Under the BF model, the symmetric subgame-perfect

equilibrium outcome is that the first-round proposer offers δ
5

to all of the other members,

and keeps 1− 4δ
5

for herself. With assuming random recognition without replacement, the

subgame perfect equilibrium outcome is that the first-round proposer offers δ
4

to all of the

other members, and keeps the remainder, 1 − δ for herself. Similar backward induction

we used with the simple majority rule is applied.

Although the game considered in this section is simple, several important observa-

tions can be made. These observations shed light on the properties of the equilibrium I

characterize in infinite-cycle bargaining.

First, in equilibrium, there is no delay in reaching an agreement. In the sense that

there is no loss due to delay, the equilibrium achieves the utilitarian efficiency. The

equilibrium is unique in payoffs.

Second, the first-round proposer forms a minimum winning coalition (MWC) con-

sisting of herself and q − 1 other players. The first two observations also hold in the

finite-horizon BF model.

Third, if the game moves on to the second round or beyond, the previous proposers

are maltreated: This is not because I model a behavioral retaliation for them to make the

efficiency loss, but because the previous proposers are cheap enough to buy their votes for

free. For terminological clarity, I divide the set of players other than the current proposer

into two groups: The previous proposers comprise the trivial coalition pool because they

would accept any offer. The nontrivial coalition pool consists of the players who have not

yet been selected as a proposer.

Lastly, the proposer’s equilibrium share is strictly smaller than that under the as-

sumption of random recognition with replacement. Under unanimity, for example, the
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first proposer gets 1− δ. If δ > n−1
n

, the proposer’s share is strictly smaller than that of

the nonproposers. When δ = 1, she gets nothing in equilibrium. This “proposer disad-

vantage” has not been predicted in the BF model under any circumstances: In the BF

model, the first proposer gets 1− n−1
n
δ under unanimity in which the proposer’s power is

the weakest. She still gets a larger share than the nonproposers for any δ. The intuition

behind the observations can be explained by the combination of the previous proposers’

decreased negotiating power and nonproposers’ increased power. This is in contrast to

many existing studies, including Ansolabehere et al. (2005) and Ali et al. (2019), which

report a formateur’s significant negotiating power. In the infinite-horizon game, the ran-

dom recognition process with replacement allows a proposer to maintain her negotiating

power. However, in the finite-horizon game without replacement, nonproposers, espe-

cially the members of the nontrivial coalition pool, share negotiating power because if

they reject the current proposal, they benefit from both a higher chance of being the

proposer in a later round and a larger number of players in the trivial coalition pool in

that later round.

4 Infinite-Cycle Bargaining

Similarly to my analysis of one-cycle bargaining, in round t I subdivide the set of

players other than the current proposer into two groups: The trivial coalition pool, T ⊂ N ,

consists of the players who have proposed within the current cycle but prior to round t,

that is, the players who have proposed in one of the rounds t− τ + 1, t− τ + 2, . . . , t− 1.

The nontrivial coalition pool, NT ⊂ N , consists of the players who have not been selected

as a proposer in the current round or in an earlier round of the current cycle. In round

8 for a legislature with 5 members, for example, the trivial coalition pool consists of

the proposers in rounds 6 and 7, and the nontrivial coalition pool consists of all players

except those two former proposers and the current proposer. As we will see shortly, the

players in the trivial coalition pool are more likely to be included as coalition partners

than those in the nontrivial coalition pool. Let xNT (st) and xT (st) denote the shares of

the economic surplus offered to some players in the nontrivial coalition pool and to some

players in the trivial coalition pool in round t, respectively. For notational convenience,

I write xt for x(st) from now on. The CSSP equilibrium is characterized as follows:

Proposition 1 (The Cycle-Stationary Subgame Perfect Equilibrium). Consider infinite-

cycle legislative bargaining, with n ≥ 3 players (n odd), a q-quota rule, and a common

discount factor δ ∈ [0, 1]. A strategy profile is a cycle-stationary subgame perfect equilib-

rium if and only if it has the following form:

� In round t with (t mod n) ≡ τ ,
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– If τ ≥ q or τ = 0, the recognized proposer offers xτT to q − 1 players selected

at random from the trivial coalition pool.

– If τ ∈ [2, q), the recognized proposer offers xτT to all τ − 1 players in the trivial

coalition pool, and xτNT to q− τ players selected at random from the nontrivial

coalition pool.

– If τ = 1, the recognized proposer offers xτNT to q−1 players selected at random

from the nontrivial coalition pool.

� Players in the trivial coalition pool accept any offer of at least xτT , and players in

the nontrivial coalition pool accept any offer of at least xτNT .

Therefore, in equilibrium, the recognized proposer in round 1 proposes x1NT to q−1 players

selected at random, and the game ends, where x1NT = δ
n−1(1 − x2T ) and xτT is recursively

determined by xq−lT = δxq−l+1
T for l = 1, 2, . . . , q − 1, and xqT = (q−1)!

n!
(q − 1)n−qδn−q+1.

Also, x1NT ∈ [ δ
n
, δ
n−1 ].

A key result that figures in the characterization of the CSSP equilibrium is that in

the final round of each cycle, the equilibrium strategy will be identical to that from the

BF model, which is described in Lemma 1.

Lemma 1. In any cycle-stationary subgame perfect equilibrium, if some round t with

(t mod n) = 0 is reached, the proposer offers δ
n

to q − 1 players selected at random, and

keeps 1− (q − 1) δ
n

for herself.

Thus, we can use backward induction from round n to round 1, or from the last round

within any cycle to the first round within that cycle. Once we characterize the unique

sequence of proposal plans and voting decision rules for one proposal cycle, we will ver-

ify that such a sequence indeed characterizes a unique cycle-stationary subgame-perfect

equilibrium in payoffs. Another finding that makes the equilibrium characterization sim-

pler is that players in the trivial coalition pool, that is, the previous proposers within the

current cycle, would be the first players to be considered as coalition partners because

they are, in a sense, cheaper.

Lemma 2. Let τ denote (t mod n). Then xτT < xτNT for τ ∈ {2, . . . , n − 1}. Therefore,

a proposer includes max{τ − 1, q− 1} players randomly selected from the trivial coalition

pool as coalition partners.

Except in the final round of a cycle, the players in the trivial coalition pool do not

have a chance of being the proposer in the following round. Thus, their continuation value

is always smaller than those who have not yet been recognized in the current cycle, and
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the latter ones re more likely to be recognized in the near future. By Lemma 2, it makes

sense to call the set of previous proposers in the current cycle the trivial coalition pool.

Though all the players have a common discount factor, the players in the trivial coalition

pool can be regarded as having a smaller discount factor, and hence the proposer will try

to win them over first.9

The remaining proofs for the characterization of the CSSP are given in the Appendix,

but the logic is straightforward from the lemmas above: The equilibrium proposal strategy

and voting decision rule in the last round within a cycle mimic those of BF (Lemma 1).

From the last round within a cycle, backward induction is applied, and the proposer

distinguishes those who have proposed within a cycle from those who have not (Lemma

2).

The uniqueness in payoffs of the SPE within a cycle, combined with the uniqueness

in payoffs of the SSPE in the BF model (Eraslan, 2002) naturally leads to the uniqueness

in payoffs of the CSSP equilibrium in infinite-cycle bargaining.

Corollary 1. The CSSP equilibrium is unique in payoffs.

The following example with n = 3 under the simple-majority rule illustrates the

procedure. For notational simplicity, proposal p is arranged in such a way that the

proposer’s share in round k is the kth entity, and the other nonzero entity is the share

offered to the member (randomly selected if necessary) of the pertinent coalition. This

does not mean that the proposer’s MWC has to include player k − 1 or player k + 1.

� Round 3 proposer: By Lemma 1, she proposes (0, δ/3, 1 − δ/3), and the player

who receives the offer of δ/3 (in this example player 2) will accept it since his

continuation value does not exceed the utility yielded by the amount which he is

offered.

� Round 2 proposer: By Lemma 2, she proposes (x2T , 1 − x2T , 0). The sole player in

the trivial coalition pool (in this example player 1), who receives the offer of x2T in

round 2, knows that if he rejects the offer he will earn δ/3 with probability 1/2 in

round 3, so x2T = δ2/6. Thus the proposal made in round 2 is ( δ
2

6
, 1 − δ2

6
, 0), and

the player who receives the offer of δ2

6
accepts it.

� Round 1 proposer: She proposes (1− x1NT , x1NT , 0). The continuation value for the

player in the nontrivial coalition pool who receives the offer of x1NT in round 1 (in

9However, the result in Lemma 2 cannot be applied in a more general model with heterogeneous
discount factors and unequal recognition probabilities. Suppose, for example, that player i has proposed
in one of the previous rounds of the current cycle, and player j has not. Then the continuation value of
player j is smaller than that of player i if δj is sufficiently smaller than δi or if the recognition probability
of player j is sufficiently smaller than that of player i.
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this example player 2) is δ
2
(1 − δ2

6
) = 6δ−δ3

12
, that is, with probability 1

2
he will be

the proposer in the second round and will keep 1− δ2

6
for himself, and the expected

payoff is discounted by δ. Thus the proposal is (1− 6δ−δ3
12

, 6δ−δ
3

12
, 0), and the player

who is offered 6δ−δ3
12

accepts it.

Note that δ
3
< 6δ−δ3

12
< δ

2
for δ ∈ (0, 1], where δ

3
is the share offered in the stationary

subgame perfect equilibrium of infinite-horizon bargaining in which n = 3 and random

recognition is the proposer selection rule, and δ
2

is the share offered in the subgame per-

fect equilibrium of one-cycle bargaining in which n = 3 and random recognition without

replacement is the proposer selection rule. In general, the initial proposer’s offer in the

CSSP equilibrium is always between δ
n−1 and δ

n
, where δ

n−1 constructs the subgame per-

fect equilibrium proposal for the game of n rounds without replacement, and δ
n

constructs

the stationary subgame perfect equilibrium proposal for the game of infinite-horizon bar-

gaining in which the random recognition process allows for replacement.

In the following subsection, I show that the theoretical prediction for the cycle-

stationary subgame perfect equilibrium coincides with that of some possible extensions

of one-cycle bargaining without replacement.

4.1 Equivalence to n+1-Round Bargaining

The theoretical predictions for infinite-cycle legislative bargaining can be attained

by n + k rounds of legislative bargaining, for any positive integer k. This is because

the proposal made in round n, the final round of the first cycle, is the same for any k,

regardless of the proposal made in round n+ 1, as long as such a round exists.

Proposition 2. Consider n-person n + k-round bargaining under random recognition

without replacement. The symmetric subgame perfect equilibrium outcome is equivalent

to the CSSP outcome of infinite-cycle bargaining.

For example, under the unanimity rule with n = 3 and δ = 1, the theoretical pre-

diction of the proposer’s share in one-cycle bargaining is 0, while that in infinite-cycle

bargaining is 1/3. Indeed, this stark difference between one-cycle bargaining and infinite-

cycle bargaining can be attained by simply adding one additional round to one-cycle

bargaining. Consider the case of four rounds of bargaining, wherein the fourth round all

three players are equally likely to be recognized as the proposer. In the fourth round, the

randomly selected proposer keeps the entire economic surplus, since it is the final round.

In the third round, the proposer offers an equal share to all three players because their

continuation value is 1/3. In the second round, where every player’s continuation value

is
(
1
3

) (
1
3

)
+
(
2
3

) (
1
3

)
= 1

3
, the proposer offers 1/3 to all three players, including herself. In
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the first round, with the same logic as for the second round, the proposer offers 1/3 to

all three players, including herself. Though the equilibrium proposal strategy and voting

decision rules for four-round bargaining are the same as for the symmetric stationary

equilibrium in the BF model, the former equilibrium is unique. This clearly illustrates

that both the random recognition process and the termination rule significantly affect

the equilibrium allocation.

This result is positive in that the cycle-stationary equilibrium, which could be one of

the equilibria in infinite-horizon bargaining, coincides with the unique subgame perfect

equilibrium for n+k finite-round bargaining with any k ≥ 1. In other words, if we focus on

symmetric strategies in finite-horizon bargaining, we can appreciate the cycle-stationary

equilibrium as an approximation from finite-round bargaining.

5 Discussions

5.1 Asymmetric Coalition Formation Strategies

Admittedly, a set of cycle-stationary subgame perfect strategies is a strict subset

of all stationary subgame perfect strategies. In particular, one may want to examine

the cases of choosing the coalition members with non-uniform probability.10 In this

subsection, I discuss why asymmetric coalition formation strategies cannot belong to

the CSSP strategies. I claim that cycle-stationary subgame-perfect strategies cannot be

asymmetric, except for some exotic situations that require further justification.

In general, stationarity does not necessarily mean symmetry in coalition formation

strategies.11 As I briefly discussed in one-cycle bargaining illustration, a cyclical—player

1 selects 2 and 3, 2 selects 3 and 4, and so on—coalition formation strategies could

generate the same payoff in equilibrium in the BF model. This illustration may beg the

question of why we should focus on symmetric strategies in infinite-cycle bargaining. I

use this cyclical coalition formation strategy in 5-person infinite-cycle bargaining under

a simple majority rule, to demonstrate that (1) asymmetric cycle-stationary strategies

are not subgame perfect, and (2) asymmetric subgame perfect strategies are not cycle

stationary. I will further address partially-asymmetric strategies that are cycle-stationary

subgame perfect.

First, I consider the cyclical coalition formation strategies are stationary in every

round. It cannot be directly applied to multilateral bargaining under random recognition

without replacement because such cyclical coalitions are not subgame-perfect in rounds

10Since we deal with identical players, asymmetric strategies primarily concern the asymmetric forma-
tion of coalition members.

11I acknowledge that one of the anonymous referees points out this.
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2 to 4. Suppose, for example, in round 2 player 2 becomes the proposer, and player 1

was the previous proposer. Player 2 will include player 1 as a minimum winning coalition

member instead of either player 3 or player 4 because x2T < x2NT . That is, player 1, who

loses his bargaining power at least for four rounds, becomes “cheaper” than players 3 and

4. Thus, asymmetric stationary strategies are not subgame-perfect.

Alternatively, I could think of the following asymmetric coalition formation strategies,

where suppose player 1 “favors” player 2 as a coalition member the most, player 3 the

second, and player 5 the least. Then the following contingency plan describes player 1’s

strategies as a proposer.

1. In round 1, player 1 selects 2 and 3 as coalition members.

2. In round 2, if either player 2 or 3 was the proposer in round 1, then player 1 selects

players 2 and 3 as coalition members.

3. In round 2, if either player 4 or 5 was the proposer in round 1, then player 1 selects

the previous proposer and player 2 as coalition members.

4. In round 3, regardless of the identities of the previous proposers, player 1 selects

two previous proposers as coalition members.

5. In round 4, if players 2 and 3 were the previous proposers, then player 1 selects

players 2 and 3 as coalition members.

6. In round 4, if player 2 (respectively, 3) was not one of the previous proposers, player

1 selects player 3 (resp., 2) and player 4 as coalition members.

7. In round 5, player 1 selects players 2 and 3 as coalition members.

Thus, player 1 includes players 2 and 3 as coalition members unless doing so violates

subgame perfection. Similarly I could consider that player i favors player (i+ 1 mod 5)

the most and player (i+2 mod 5) the second. Note that asymmetric coalition formations

work well in the first and the last rounds within a cycle, but in the other rounds, players’

strategies must be contingent unless the order of the proposers’ identities is repeated

per cycle. I have not examined whether this construction yields the same payoffs in

equilibrium because those strategies are not cycle-stationary. The key idea behind the

cycle-stationarity is that the number of players eligible to be a proposer in round t is

repeated per cycle, not the identities of those players in st. In this case, in rounds 2 and

4, the strategies are different based on the identities of the previous proposers. That is,

asymmetric subgame-perfect coalition formation strategies are not cycle-stationary.
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Lastly, the cyclical coalition formation strategies could be used only in the first and

the last rounds within a cycle, and in the other rounds of the cycle, the proposer selects

coalition members with uniform probability. I utilize the fact that in the first and the

last rounds within a cycle, there is no need to distinguish who has proposed and who has

not. That is,

1. In round 1, player 1 selects 2 and 3 as coalition members.

2. In round 2, player 1 selects the previous proposer and randomly selects one member

among others as coalition members.

3. In round 3, player 1 selects two previous proposers as coalition members.

4. In round 4, player 1 randomly selects two of the three previous proposers as coalition

members.

5. In round 5, player 1 selects 2 and 3 as coalition members.

This strategy, or every asymmetric coalition strategy that generates a uniform prob-

ability of 2/5 to be selected as a winning coalition in the first and the last rounds of

a cycle, is indeed cycle-stationary subgame-perfect. However, one may wonder why we

should consider such partially-asymmetric strategies. The asymmetric coalition forma-

tion strategies are often interpreted as legislators’ favors toward some other legislators, so

this type of asymmetric coalition formation strategies is slightly unappealing. One may

interpret that only the first and the last rounds within a cycle are the moments when the

“usual” coalition works. This type of partially-asymmetric coalition strategies is perhaps

a meaningful theoretical extension, but it is beyond the scope of the paper.

5.2 Comparison to the BF Model Predictions

To provide a direct comparison to the BF model, I focus on the proposer’s share in

equilibrium. Other important properties, such as the minimum winning coalition, full

rent extraction, and no delay, are shared by all the models considered. The proposer has

the same advantage as the one in the BF model either (1) under a dictatorship, or (2)

under unanimity with δ = 1. Except for these two cases, in the CSSP equilibrium the

proposer has a strictly lesser advantage than in the protocols considered in the BF model,

even when δ = 1.

Proposition 3. Suppose δ = 1. The equilibrium share of the proposer in infinite-cycle

bargaining is always weakly lower than that in the BF model, and strictly lower when

q 6∈ {1, n}.
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It is worth noting that the difference in terms of the proposer advantage is not neg-

ligible even when δ = 1, that is, when everyone is fully patient and there is no penalty

on indefinite delay. When the size of the legislature is sufficiently small, the difference is

largest under the simple-majority rule. When the size of the legislature is large, however,

a super-majority rule yields the largest difference. In Figure 1, the difference is plotted

for n = 19 and n = 99 as a function of q ∈ [1, n].

Figure 1: Super-Majority Rules Yielding the Largest Difference

q
1 19

0.01

0.02

0.03

12

0.0283
(53.77% of the
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0.003

0.006

0.009

1 9977

0.0075
(74.25% of the
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Each graph is a plot of the difference (as a function of q) between the proposer’s share in the SSP
equilibrium of the BF model and that in the CSSP equilibrium of infinite-cycle bargaining without
replacement under a q-quota rule. The size of the legislature is 19 in the upper graph, and 99 in the
lower graph. As n gets larger, the maximum difference gets smaller (0.0283 when n = 19 and 0.0075
when n = 99) in level. Compared with the ex-ante expected payoff, the differences are substantial.
The difference is largest at q∗(n), and q∗(n)/n increases in n (12/19 = 0.6315 when n = 19, and
77/99 = 0.7778 when n = 99).

Proposition 3 gives some sense of when using the BF model is innocuous as an an-

alytic tool for legislative bargaining without replacement. Although the assumption of

random recognition deviates from reality, it obviously has great theoretical merit, as it

is parsimonious, it guarantees structural equivalence in every subgame, it allows many

possible extensions, and it enables us to characterize the stationary equilibrium in a

straightforward manner. Since all other important properties in equilibrium are shared

by all the models considered here, it would be of interest to know when the BF model

would be used in cases where random recognition without replacement is the proposer

selection rule. Proposition 3 implies that when the size of the legislature is large and
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the simple-to-super-majority rule is applied, it is not a good idea to use the BF model

for understanding actual legislative behaviors. Even when δ = 1, the proposer’s share

in the CSSP equilibrium is strictly smaller than that in the SSP equilibrium except in

the case of the unanimity rule and a dictatorship. The difference in the proposer’s share

is substantial: For example, when n = 19, the largest difference between the proposer’s

share in the SSP equilibrium and that in the CSSP equilibrium is 0.0283 at 12-quota

rule. This difference is more than a half (53.77%) of the ex-ante expected payoff of each

player, 0.0526 (= 1/19). Even though the absolute difference in the prediction of the

proposer’s share is decreasing in n, the ratio of the maximum difference to the ex-ante

expected payoff is increasing in n. When n = 99, the largest difference is nearly three

quarters (74.25%) of the ex-ante expected payoff. Indeed, the ratio is increasing in n.

Proposition 4. The ratio of the maximum difference between the equilibrium proposer

share in infinite-cycle bargaining and that in the BF model to the ex-ante expected payoff

of each player is increasing in n.

When the budget is normalized to 1, it is natural for the difference to decrease as n

gets larger. However, Proposition 4 implies that if the surplus being divided gets larger

as the size of the legislature increases, the difference in terms of the proposer advantage

would be much of concern as the ratio of the maximum difference to the ex-ante expected

payoff increases. These observations suggest that the BF model should be used with

some caveats especially when the legislature with a large number of members adopts a

super-majority rule and maintains the idea of the “one bite at the apple” rule.

Another interesting observation is that a super-majority rule yields the largest dif-

ference when the size of the legislature is large. Since the difference is strictly positive

except either when q = n and δ = 1 or when q = 1, casual analysis and an expectation of

symmetry may lead to the conclusion that the largest difference occurs under the simple-

majority rule, and hence that understanding actual legislative behaviors through the lens

of the BF model is reasonable for situations where a super-majority rule is applied. How-

ever, this is not the case. For example, when the size of the legislature is around 30, the

largest difference in terms of the proposer’s share occurs under the 2/3 majority rule.12

Considering that the average size of the upper house in the legislatures of U.S. states and

U.S. territories is 37 (39 if the five U.S. territories are excluded), and a supermajority of

the state legislature is required to approve tax increases in fifteen states,13 this difference

should not be overlooked.

12q∗(29, 1) = 19, and q∗(31, 1) = 21. Thus q∗(n,1)
n ≈ 2

3 when n is either 29 or 31.
13Source: National Conference of State Legislators [online] Last access: 10/22/2016.
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6 Concluding Remarks

This paper examines how the equilibrium characterization of a sequential, multilateral

bargaining process is affected by the random recognition rule. In the existing legislative

bargaining literature, random recognition allows the current proposer to be recognized

again in the following rounds, while the model considered here prohibits recognition of

any player as the proposer in more than one round until everyone has had the same

number of chances to be the proposer. Since this infinite-horizon bargaining game has a

specific cyclical pattern, I introduce an extended notion of stationarity, which I call cycle

stationarity, and characterize the cycle-stationary subgame perfect equilibrium. Some

forms of finite-horizon bargaining have the strategy profile in the CSSP equilibrium as the

unique subgame perfect equilibrium. Legislative bargaining under the random recognition

process without replacement yields a smaller proposer advantage, but all other features

in equilibrium are the same as, or qualitatively similar to, those of the Baron–Ferejohn

model. However, the difference in the proposer advantage is quite substantial under

super-majority rules, so the Baron–Ferejohn model should be used with some caveats

especially when the proposer share is the subject of study.

There are many potential directions for extension of this legislative bargaining model

that adopts random recognition without replacement as the proposer selection rule. For

example, there would be theoretical merit in extending the model presented in this pa-

per by allowing for individual discount factors and asymmetric recognition probabilities.

Further investigation of one-cycle bargaining would be required to determine its wel-

fare implications: Since the simple-majority rule predicts a proposer advantage, and the

unanimity rule predicts a proposer disadvantage for some values of the parameters, one

can characterize the optimal voting rule that yields the most egalitarian distribution of

the economic resources. Conducting lab experiments would help us to gain a better un-

derstanding of multilateral bargaining behavior. In particular, out-of-equilibrium-path

observations in the laboratory would shed some light on other factors that could or should

be accounted for in the model.
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Appendix A: Omitted Proofs

Proof of Lemma 1: For any round t with (t mod n) = 0, the recognized player is the last

proposer within the current cycle. As a new cycle starts in the following round, st+1 = N ,

that is, every player will have an equal chance of being recognized as the proposer in that

following round. Suppose that in equilibrium the round-t proposer offers x0T to q − 1

players selected at random and keeps 1− (q − 1)x0T for herself. A player who receives an

offer of x0T will accept it if

δt−1x0T ≥ δt
(

1

n
(1− (q − 1)x1NT ) +

q − 1

n
x1NT

)
,

where x1NT is the amount offered to each of q−1 members of the nontrivial coalition pool

in the first round of a new cycle. The first term on the right-hand side of the inequality
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above corresponds to the event that the player is recognized as the proposer in round

t + 1, and the second term corresponds to the event that the player is not recognized

as the proposer in round t + 1 but is included in the minimum winning coalition of the

proposer in round t+1. Although we have not fully characterized what x1NT is, the terms

on the right-hand side of the inequality above that include a factor of x1NT cancel out,

thereby leaving just δ
n

after dividing both sides by δt−1. Subgame perfection implies that

the proposer need be no more generous than to offer the discounted continuation value

to a minimum number of members and 0 to the others. Therefore, in every round t with

(t mod n) = 0, the proposer offers δ
n

to q − 1 players selected at random.

Proof of Lemma 2: Note that x0NT is not defined when (t mod n) = 0, because the non-

trivial coalition pool is empty. Similarly, x1T is not defined when (t mod n) = 1, because

the trivial coalition pool is empty. We restrict our attention to nontrivial cases, that is,

rounds t with (t mod n) ∈ {2, . . . , n−1}. Suppose that in any round t with (t mod n) = τ ,

the proposer treats all the other members identically, that is, xτT = xτNT = xτ , and she se-

lects q−1 coalition partners at random. Then the continuation value of the players in the

trivial coalition pool is δ q−1
n−1x

τ+1, and that of the players in the nontrivial coalition pool

is δ
(

1
n−τ (1− (q − 1)xτ+1) + q−1

n−1x
τ+1
)
. Since the latter is strictly greater than the former,

the proposer would be strictly better off by retracting an offer made to one player in the

nontrivial coalition pool and offering a strictly smaller share to one player in the trivial

coalition pool who wasn’t included initially, which is a contradiction. Analogously, one

can show that xτT > xτNT also leads to a contradiction. Therefore, if τ ≤ q, all the players

in the trivial coalition pool will be included as coalition partners, and if τ > q, q−1 of the

players in the trivial coalition pool will be randomly selected as the coalition partners.

Proof of Proposition 1: This proof is followed by Lemma 1, which describes the

equilibrium strategy profile in the final round of each cycle, and Lemma 2, which states

that whenever possible members in the trivial coalition pool are considered to form a

minimum winning coalition first. Now we can assure that the finite subgame (a cycle of

n rounds) has a unique subgame perfect equilibrium (with allowing a mixed strategy in

terms of selecting some of identical players at random,) because the equilibrium strategy

at the final node is characterized by Lemma 1, and how to choose coalition partners in

each subgame is described by Lemma 2. Though we consider an infinite-horizon game,

we only need to implement backward induction for n times. The exact characterization

of the equilibrium is, however, nontrivial because the backward induction may be, though

doable, computationally heavy.

From the last round of the cycle to the qth round, the backward induction can be
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applied in a rather simple manner, since the number of players in the trivial coalition

is greater than the number of coalition partners needed. Lemma 3 characterizes an

equilibrium strategy at a subgame in the qth node of the cycle or after.

Lemma 3. For any odd n ≥ 3, in round τ = (t mod n) ∈ {q, q + 1, . . . , n − 1}, a

proposer’s equilibrium strategy is to offer xτT = (τ−1)!
n!

(q − 1)n−τδn−τ+1 to q − 1 players

randomly selected from the trivial coalition pool.

Proof: By Lemma 2, from round q to round n, proposers always offer only to players

in the trivial coalition pool because there is a sufficient number of ‘cheap’ players. By

Lemma 1, in round n, the proposer offers xnT = δ
n

to q−1 players randomly selected among

all the other players. In round n− 1, the proposer offers xn−1T to q − 1 players randomly

selected among n − 2 players in the trivial coalition pool. The player who got offered

xn−1T knows that if he rejects the offer he will be offered xnT with probability q−1
n−1 . Thus

a nonproposer will accept any offer larger than or equal to δxnT
q−1
n−1 = δ2(q−1)

n(n−1) . Since the

proposer in round n−1 wants to maximize her utility, she offers xn−1T = δ2(q−1)
n(n−1) . In round

n− 2, a player offered xn−2T knows that if he rejects the offer he will be offered xn−1T with

probability q−1
n−2 . Analogously, the proposer in round n− 2 offers xn−2T = δ3(q−1)2

n(n−1)(n−2) . This

backward induction is analogously applied to the round q, and the proposer in round q

offers xqT = δn−q+1(q−1)n−q

n(n−1)···(n−q+1)
= (q−1)!

n!
(q−1)n−qδn−q+1 to all players in the trivial coalition.

Now we need to characterize an equilibrium strategy at the subgame of round q −
1, q − 2, . . . , 1.

Lemma 4. For any n ≥ 3, in the first round, a proposer’s equilibrium strategy is to offer
δ

n−1(1−x2NT ) to q players randomly selected from the nontrivial coalition pool, where x2NT
is recursively determined by xq−lNT = δxq−l+1

T , l = 1, 2, . . . , q − 1.

Proof: In round q− l, l = 1, 2, . . . , q− 2, there are q− l− 1 players in the trivial coali-

tion, so a proposer must offer a nonnegative share to l players randomly selected from the

nontrivial coalition pool. In round q−1, the continuation value of the player in the trivial

coalition is δxqT , because when the game continues to the next round, he will receive xqT
with probability 1. Thus xq−1T = δxqT . On the other hand, the player being offered xq−1NT

knows that if he rejects the offer, then with probability 1
n−q he will be the proposer in the

next round and earn 1− (q − 1)xqT , nothing otherwise. Thus xq−1NT = δ
n−q (1− (q − 1)xqT ).

The proposer in round q − 1, therefore, keeps 1 − (q − 2)xq−1T − xq−1NT for herself. In

round q − 2, the continuation value of the player in the trivial coalition is, analogously,

δxq−1T , thus xq−2T = δxq−1T . Each of the players offered xq−2NT knows that if he continues to

play in the next round, then with probability 1
n−q+1

, he will be the proposer and keeps
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1− (q− 2)xq−1T − xq−1NT for himself, and with another probability 1
n−q+1

, he will be a coali-

tion partner and receive xq−1NT . Thus, the current proposer offers xq−2T to all the players in

the trivial coalition, offers xq−2NT = δ
n−q+1

(
1− (q − 2)xq−1T

)
to randomly selected two from

the nontrivial coalition pool, and keeps 1− (q−3)xq−2T −2xq−2NT for herself. This backward

induction is analogously applied to the second round. In round 2, the continuation value

of the player in the trivial coalition is δx3T , thus x2T = δx3T . Each of the players offered

x2NT knows that if he continues to play in the next round, then with probability 1
n−2 , he

will be the proposer and keeps 1−2x3T − (q−3)x3NT for himself, and with probability q−3
n−2

he will be included as a coalition partner and receives x3NT . Thus, the current proposer

offers x2NT = δ
(

1
n−2 (1− 2x3T − (q − 3)x3NT ) + q−3

n−2x
3
NT

)
= δ

n−2 (1− 2x3T ) to randomly se-

lected q − 2 members from the nontrivial coalition pool, and keeps 1− x2T − (q − 2)x2NT
for herself. Finally, in round 1, where there is no trivial coalition, a proposer offers x1NT
to q− 1 players selected at random, where x1NT is equal to the coalition partner’s contin-

uation value, that is, x1NT = δ
(

1
n−1(1− x2T − (q − 2)x2NT ) + q−2

n−1x
2
NT

)
= δ

n−1(1− x2T ).

In the course of proving Lemmas 1 to 4, the cycle-stationary subgame perfect equi-

librium is completely characterized. The remaining task is to show that x1NT is always

between δ
n

and δ
n−1 . To see this, we need to fully expand x1NT .

x1NT =
δ

n− 1
(1− x2T ) =

δ

n− 1
− δ2

n− 1
x3T = . . . =

δ

n− 1
− δq−1

n− 1
xqT

=
δ

n− 1
− δq−1

n− 1

(q − 1)!

n!
(q − 1)n−qδn−q+1

=
δ

n− 1
− δn

n− 1

(q − 1)!

n!
(q − 1)n−q

When q = 1, x1NT is δ
n−1 . (However, it will be offered to q − 1, that is, 0 members.)

When q = n, x1NT = δ
n−1−

δn

n(n−1) , which is strictly smaller than δ
n−1 , and larger than δ

n
with

equality hold when δ = 1. Now I consider q ∈ {2, . . . , n−1}. Since δn

n−1
(q−1)!
n!

(q − 1)n−q is

positive, x1NT is smaller than δ
n−1 . Also, except when δ = 0, x1NT is strictly greater than

δ
n
. I assume δ > so that the terms in the following inequalities can be divided by δ.

δ

n
≤ x1NT =

δ

n− 1
− δn

n− 1

(q − 1)!

n!
(q − 1)n−q

⇔ δn

n− 1

(q − 1)!

n!
(q − 1)n−q ≤ δ

n− 1
− δ

n
=

δ

n(n− 1)

⇔δn−1 (q − 1)!

(n− 1)!
(q − 1)n−q ≤ 1

⇔δn−1 q − 1

n− 1

q − 1

n− 2
· · · q − 1

q
≤ 1
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Since each of q−1
n−1 , . . . ,

q−1
q

is smaller than 1, so is the product of them.

Proof of Proposition 2: Consider a subgame perfect equilibrium of the subgame in

round t + 1. Since k is a positive integer, such a round exists. Suppose in the subgame

perfect equilibrium of the t+1-round subgame, the proposer offers xt+1 to q−1 randomly

selected nontrivial members, and keeps 1− (q− 1)xt+1 for herself. Given this equilibrium

in round t+ 1, the proposer in round t offers q− 1 randomly selected trivial members xt,

and keeps 1− (q − 1)xt for herself. A player who receives an offer of xt will accept it if

δt−1xt ≥ δt
(

1

n
(1− (q − 1)xt+1) +

q − 1

n
xt+1

)
,

which is equivalent to the inequality in the proof of Lemma 1. Thus, the subgame perfect

equilibrium in t-round subgame is equivalent to the round-t strategy profile of the CSSP

equilibrium. Backward induction is applied in the same way.

Proof of Corollary 1: From Lemma 1, we observe that the proposer’s problem in

the last round of each cycle is identical to that in each round of the BF model: In both

situations, there are n potential proposers in the next round, including the current pro-

poser. Since everyone is eligible to be recognized as a proposer, there is no distinction

between trivial and nontrivial coalition pools. That is, if we focus on stationary strategies

on round n, 2n, 3n, . . ., then it is clear that the state space is singleton, and the SSPE

equilibrium strategies characterize the CSSP equilibrium strategies in the last round of

each cycle. Due to Eraslan (2002), we know that the SSPE of the BF model is unique in

payoffs. Thus, we apply backward induction from round n to round 1, with knowing that

the uniqueness in payoffs in round n is guaranteed. Suppose for the sake of contradic-

tion that there are two subgame-perfect equilibria at a subgame in round t ∈ {1, . . . , n}
which render different payoffs to coalition members. (Different payoffs to the proposer

directly violate the subgame perfection.) In each equilibrium, different payoffs across the

coalition members in the same (either trivial or nontrivial) coalition pool directly violate

the subgame perfection. Since the number of the trivial coalition pool is the same in

both equilibria, the number of the coalition members from the nontrivial coalition pool

must be the same. Thus, the only possible situation is that in one equilibrium members

in the nontrivial coalition pool are offered x̃tNT more than what they are offered in the

other equilibrium, xtNT . It contradicts that the strategy is subgame perfect: The proposer

can exploit further by reducing x̃tNT to xtNT . Therefore, the payoff in each subgame is

unique.
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Proof of Proposition 3: Let BFq,n denote the proposer’s share in the SSP equilibrium

of the BF model under a q-quota rule with n players (n odd) and a discount factor of

δ = 1, and let InfCq,n denote the corresponding share in infinite-cycle bargaining. Also,

let q∗(n) denote the q that yields the largest difference between BFq,n and InfCq,n. From

the proof of Proposition 1, we know that x1NT is equal to δ
n

only when δ = 1 and q = n.

It is trivial that the equality holds when q = 1, that is, under a dictatorship. Other

than that, x1NT is strictly greater than δ
n

for any δ. Thus the proposer’s share in the

CSSP equilibrium is strictly smaller than at in the SSP equilibrium. We focus on the

cases where δ = 1. My first goal is to find q∗(n), the argument that maximizes the

difference between the proposer’s share in the SSP equilibrium of the Baron–Ferejohn

model (denoted by BFq,n) and that in the CSSP equilibrium of infinite-cycle bargaining

without replacement (InfCq,n). Since

BFq,n − InfCq,n =

(
1− q − 1

n

)
−
(

1− (q − 1)

(
1

n− 1
− 1

n− 1

(q − 1)!

n!
(q − 1)n−q

))
= −q − 1

n
+
q − 1

n− 1
− 1

n− 1

(q − 1)!

n!
(q − 1)n−q+1

=
1

n(n− 1)

(
q − 1− (q − 1)!

(n− 1)!
(q − 1)n−q+1

)
︸ ︷︷ ︸

=Q(n,q)

,

q∗(n) ∈ arg max
q∈{1,...,n}

Q(n, q) = q − 1− (q − 1)!

(n− 1)!
(q − 1)n−q+1.

I want to show the followings: (1) Q(n, q) is single-peaked in n so that q∗(n) is unique.

(2) When q = (n+1)/2, changing q to q′ = q+1 yields a larger difference for any n ≥ 11.

(3) q∗(n+1)
n+1

≥ q∗(n)
n

.

Lemma 5. q∗(n) is unique.

Proof: Since the factorial is a discrete function, we cannot directly differentiate it with

respect to q. Instead, using Stirling’s approximation, I first show that the continuous

function that approximates the objective function has a unique maximizing argument.

Then, I show that any two adjacent integers cannot be the maximizing arguments at the

same time. These two claims jointly imply the uniqueness of the maximizing argument.

Since n! ∼
√

2πn
(
n
e

)n
,

q − 1− (q − 1)!

(n− 1)!
(q − 1)n−q+1 ≈ q − 1−

√
2π(q − 1)

(
q−1
e

)q−1√
2π(n− 1)

(
n−1
e

)n−1 (q − 1)n−q+1

= q − 1− (q − 1)n+
1
2 e−qK(n) := F (n, q),
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where K(n) = en
(

1
n−1

)n− 1
2 . The first order condition with respect to q is

∂F (n, q)

∂q
= 1−

(
n− q +

3

2

)
(q − 1)n−

1
2 e−qK(n),

which is −1
2

when q = n, and 1 when q = 1. Since this function is continuous, by the inter-

mediate value theorem, there exists q∗ such that 1−
(
n− q∗ + 3

2

)
(q∗−1)n−

1
2 e−q

∗
K(n) = 0.

The second order condition with respect to q, ∂2F (n,q)
∂q2

, is

(q−1)n−
1
2 e−qK(n)−

n− 1
2

q − 1

(
n− q +

3

2

)
(q−1)n−

1
2 e−qK(n)+

(
n− q +

3

2

)
(q−1)n−

1
2 e−qK(n).

Using the fact that 1 =
(
n− q∗ + 3

2

)
(q∗ − 1)n−

1
2 e−q

∗
K(n), we know that

∂2F (n, q)

∂q2

∣∣∣∣
q=q∗

=
1

n− q∗ + 3
2

−
n− 1

2

q∗ − 1
+ 1,

which is strictly smaller than 0 for q ∈ [1, q), and greater than 0 for q ∈ [q, n], where q ≤ n

is such that q− 1 =
(
n+ 1

2
− q
) (
n+ 3

2
− q
)
. I claim that ∂2F (n,q)

∂q2

∣∣∣
q=q∗

is strictly smaller

than 0, so that q∗ is unique. Suppose for the sake of contradiction that ∂2F (n,q)
∂q2

∣∣∣
q=q∗
≥ 0. It

implies that such q∗ is in [q, n]. Two observations that ∂F (n,q)
∂q

∣∣∣
q=q∗

= 0 and ∂2F (n,q)
∂q2

∣∣∣
q=q∗

>

0 jointly imply that ∂F (n,q)
∂q

∣∣∣
q=n

> 0. However, we know that it is −1/2, which is a

contradiction.

Next, I want to show that for any q, both q and q + 1 cannot be the maximizing

arguments at the same time. Suppose for the sake of contradiction that q and q + 1 are

both maximizing arguments. Then,

q − 1− (q − 1)!

(n− 1)!
(q − 1)n−q+1 = q − q!

(n− 1)!
qn−q

Rearranging terms, we have

qn−q+1 − (q − 1)n−q+1 =
(n− 1)!

(q − 1)!

This equality holds only when q = n, which contradicts existence of q + 1.

Lemma 5 assures that the difference between the proposer’s share in the CSSP equi-

librium and that in the SSP equilibrium is described by a single-picked function with

respect to q. Next, I show that a supermajority, not a simple majority, is the voting rule
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that maximizes the difference for a sufficiently large n. Specifically, I want to show that

for n ≥ 11, Q(n, n+3
2

) > Q(n, n+1
2

).

Plugging q = n+1
2

and q + 1 into Q(n, q) = q − 1− (q−1)!
(n−1)!(q − 1)n−q+1, and taking the

difference, we have

Q

(
n,
n+ 3

2

)
−Q

(
n,
n+ 1

2

)
= 1−

(
n−1
2

)
!

(n− 1)!

((
n+ 1

2

)n+1
2

−
(
n− 1

2

)n+1
2

)
.

I claim this is strictly positive when n is sufficiently large.

1−
(
n−1
2

)
!

(n− 1)!

((
n+ 1

2

)n+1
2

−
(
n− 1

2

)n+1
2

)
> 0

⇔
(
n+ 1

2

)n+1
2

−
(
n− 1

2

)n+1
2

<
(n− 1)!(
n−1
2

)
!

= (n− 1)(n− 2) · · · (n+ 1

2
)︸ ︷︷ ︸

n−1
2

terms

⇔
n+1
2

n− 1

n+1
2

n− 2
· · ·

n+1
2

n+1
2

n+ 1

2
−

n−1
2

n− 1

n−1
2

n− 2
· · ·

n−1
2

n+1
2

n− 1

2
< 1

When n approaches to infinity, the first term of the left-hand side of the inequality

above converges to 0 because
n+1
2

n−1

n+1
2

n−2 · · ·
n+1
2

n+1
2

converges to 0 exponentially faster than n+1
2

approaches to infinity. Similarly, the second term also converges to 0. Therefore there

should exist n such that for any n ≥ n, the left-hand side is close to 0. I manually find

that such n is 11. Lastly, I show that q∗(n)
n

is increasing in n. Let f(n, q) denote ∂F (n,q)
∂q

.

Note that f(n, q∗) = 1 −
(
n− q∗ + 3

2

)
(q∗ − 1)n−

1
2 e−q

∗
K(n) = 0. Since every entity in(

n− q∗ + 3
2

)
(q∗ − 1)n−

1
2 e−q

∗
K(n) is increasing in n, f(n, q) is decreasing in n. Since we

are interested in d(q∗/n)
dn

, introduce a new variable y = q∗/n. Since q∗ ≥ n+1
2

for all n, y is

in [1/2, 1). Replacing q∗ with ny, we have

f(n, y) = 1−
(
n− ny +

3

2

)
(ny − 1)n−

1
2 e−nyK(n) = 0.

The remaining tasks are to show ∂f(n, y)/∂y ≤ 0 because if it is so, dy
dn

= −∂f(n,y)/∂n
∂f(n,y)/∂y

≥ 0

by the implicit function theorem. ∂f(n,y)
∂n

= (1− y)∂f(n,q)
∂n

> 0 since y < 1.

∂f(n, y)

∂y
= n(yn− 1)n−

1
2 e−nyK(n)−

n− 1
2

yn− 1
(n− yn+

3

2
)(yn− 1)n−

1
2 e−nyK(n)

+ n(n− yn+
3

2
)(yn− 1)n−

1
2 e−nyK(n)

=
n

n− yn+ 3
2

(1− f(n, y))−
n− 1

2

yn− 1
(1− f(n, y)) + n(1− f(n, y)).
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Since f(n, y) = 0, ∂f(n,y)
∂y

= n
n−yn+ 3

2

− n− 1
2

yn−1 + n. Both n
(1−y)n+ 3

2

and − n− 1
2

yn−1 are monotone

increasing in y ∈ [1/2, 1), it is sufficient to show that ∂f(n,y)
∂y

∣∣∣
y=1/2

= 2n
n+3
− 2n−1

n−2 + n =

2(n+3−3)
n+3

− 2(n−2+1)
n−2 + n = n− 6

n+3
− 2

n−2 ≥ 0, which holds for any n ≥ 3.

Proof of Proposition 4: Since the ex-ante expected payoff of each player is 1/n, my

goal is to show (BFq∗(n),n − InfCq∗(n),n)/(1/n), or n(BFq∗(n),n − InfCq∗(n),n), is increasing

in n. Since we deal with integers, my goal boils down to show

(n+ 1)(BFq∗(n+1),n+1 − InfCq∗(n+1),n+1) ≥ n(BFq∗(n),n − InfCq∗(n),n).

(Because we have considered odd integers, BFq∗(n),n− InfCq∗(n),n might be compared with

BFq∗(n+2),n+2 − InfCq∗(n+2),n+2, but this does not affect the result.) Since BFq∗(n+1),n+1 −
InfCq∗(n+1),n+1 ≥ BFq∗(n),n+1 − InfCq∗(n),n+1 by definition of q∗(·), the inequality holds if

(n+ 1)(BFq∗(n),n+1 − InfCq∗(n),n+1) ≥ n(BFq∗(n),n − InfCq∗(n),n),

where

(n+ 1)(BFq∗(n),n+1 − InfCq∗(n),n+1)

= (n+ 1)
1

(n+ 1)n

(
q∗(n)− 1− (q∗(n)− 1)!

(n− 1)!
(q∗(n)− 1)n−q

∗(n)+1 q
∗(n)− 1

n

)
=

1

n

(
q∗(n)− 1− (q∗(n)− 1)!

(n− 1)!
(q∗(n)− 1)n−q

∗(n)+1 q
∗(n)− 1

n

)
and

n(BFq∗(n),n − InfCq∗(n),n) = n
1

n(n− 1)

(
q∗(n)− 1− (q∗(n)− 1)!

(n− 1)!
(q∗(n)− 1)n−q

∗(n)+1

)
=

1

n− 1

(
q∗(n)− 1− (q∗(n)− 1)!

(n− 1)!
(q∗(n)− 1)n−q

∗(n)+1

)
.

For notational simplicity, denote q∗(n)− 1 as X, and (q∗(n)−1)!
(n−1)! (q∗(n)− 1)n−q

∗(n)+1 as

C. Then, we need to check the inequality of the following:

1

n

(
X − CX

n

)
≥ 1

n− 1
(X − C)

⇔ n− 1

n
≥ X − C
X − CX

n

.

If q = n, BFq,n−InfCq,n = 0. Thus q∗(n), the quota rule that yields the largest difference,
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must be smaller than n − 1. Therefore, X
n
≤ n−1

n
. Also, q = 1 cannot be q∗(n), so

q∗(n) ≥ 1, or X ≥ 1. The denominator of the right-hand side of the inequality becomes

much smaller than the numerator, while the left-hand side approaches 1. Therefore if n

is sufficiently large, the inequality holds.
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