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Abstract

To control sequential public bad productions under imperfect monitoring, this

paper proposes a penalty lottery: A violator passes the responsibility of the fine to

the next potential violator with some probability and pays all the accumulated fines

with the complementary probability. The penalty lottery does not merely impose

extreme fines because an absorbing state is practically unreachable. It self-selects

people more willing to produce public bads and endogenously imposes the larger ex-

pected fines on them. It has advantages over the day-fine system in which the fine

depends on the offender’s daily income. Experimental evidence is consistent with

the proposed theoretical predictions.

Keywords: Institutional change, Public bads, Misdemeanors, Imperfect monitor-

ing, Laboratory experiments

1 Introduction

Tickets issued for misdemeanors are a multi-billion industry. More than ten million

citations for parking violations were issued during the fiscal year 2017 in New York City.1

The minimum fine is $35, so the parking tickets alone are at least a 378-million-dollar

revenue generator. If that number represents the social costs incurred by the negative
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externalities of wrongdoing, it is natural to consider the proper way to minimize misde-

meanors. A day-fine system, in which a unit of fine payment is based on the offender’s

daily personal income, is employed in some countries, and it has been considered an al-

ternative to fixed fines (Hillsman, 1990). Several news media outlets have covered the

day-fine system in Finland.2 However, it is still debatable whether the wealth level—

a factor not directly related to the offending action—justifies the different fines for the

same wrongdoing and whether it would prevent the misdemeanors of the poor.3 Spend-

ing more resources to enhance public monitoring, such as hiring more police officers, is

not always implementable. Increasing the fine may not be justifiable for multiple rea-

sons. If a fine is precisely determined at the level to correct the negative externality of

wrongdoing (Becker, 1968), there is no ground for increasing the fine. Even so, if a local

government enforces exceptionally severe penalties to eradicate all incidences of public

bads, this leads to distorted incentives on the margin (Stigler, 1970). If, for example, ev-

ery misdemeanor results in a substantial fine, so the punishment for littering is almost

the same as for burglary, then a person willing to litter might also be willing to break

into a structure. As discussed later, another potential issue of the unilateral fine increase

is that it deters the actions of citizens with low willingness to produce public bads, while

citizens with high willingness remain undeterred.

Given that the fundamental reason for prohibiting a misdemeanor is that it produces

a public bad, a broader goal is to seek efficient ways to reduce an individual’s sequential

public bad production under imperfect monitoring. Although the motivating example

is parking violations, any problem of bad uses of common resources is also relevant to

the broader goal. The primary purpose of this paper is to propose a simple institutional

change that helps to attain the goal, which, herein, is called a penalty lottery. A viola-

tor, a citizen who produced a public bad for their own sake and was monitored, passes

over and accumulates the fine for the next violator with some probability q, and that

person pays all of the accumulated fines with probability 1− q. The standard rule of the

game is nested as a special case with q = 0. This institutional change involves neither a

change in the public monitoring capacity nor an increase in the nominal fine, but it could

reduce the number of public bad producers in the long run. Even in a situation where

every individual citizen initially finds public bad production beneficial, this penalty lot-

2Daley, Suzanne. April 25, 2015. Speeding in Finland Can Cost a Fortune, if You Already Have One.
New York Times. Accessed: March 9, 2019.
Pinsker, Joe. March 12, 2015. Finland, Home of the $103,000 Speeding Ticket. The Atlantic. Accessed:
March 9, 2019.

3Another practical issue is how the income level can be transparently measured: The fact that a day-fine
system is currently employed in countries where the degree of public tax transparency is high suggests that
establishing a high level of public tax transparency may be the first-order requirement for implementing
a day-fine system.
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tery asymptotically prevents every citizen from producing a public bad after some finite

period. However, the existence of an ‘absorbing state,’ where a sufficiently large number

of fines are accumulated so that no one violates the law, is neither the main advantage

of the penalty lottery nor the central claim raised in this paper. Although the prediction

of asymptotic convergence to the absorbing state is robust to (bounded) heterogeneities

in citizens’ risk preferences and social preferences, it can take substantially longer peri-

ods to reach such an absorbing state when a minuscule fraction of the population brings

an additional heterogeneity. When the distribution of the heterogeneities is unbounded

above, then the steady state is never reached. Hence, this paper focuses more on the

short-run dynamics.

The merit of the penalty lottery is that it dynamically self-selects those who are more

likely to produce a public bad, so it endogenously imposes the larger expected fines to

them, even without further controls from the government. If people subjectively evaluate

the fine relative to their income, then the penalty lottery could endogenously build up the

day-fine system. If individuals’ risk preferences are different, risk seekers are willing to

produce a public bad when the size of accumulated fines is larger than what the risk-

averse can afford, making them share the burden of the large accumulated fines. This

implies that when the penalty lottery is introduced, the expected benefit of risk seekers

might not be larger than that of the risk-averse.

This paper claims that the penalty lottery, or the random pass of the penalty, would

work in various situations in which the primary challenge is to minimize the production

of public bads with imperfect monitoring capacity, such as reducing carbon dioxide emis-

sions of firms and controlling individual spending of the common goods.4 In particular,

this institution would work as a mechanism to offer different fines based on the offender’s

willingness to commit misdemeanors. A citizen decides whether to violate the law for his

own sake, knowing that his action bears a small chance of paying all the accumulated

fines. It does not mean that the system unilaterally imposes unjustly-added penalties

on every citizen. Those who find the accumulated fines large will discontinue commit-

ting misdemeanors and therefore have to pay no penalties. Only those who are willing

to take the risk of paying all the accumulated fines will commit misdemeanors. In this

regard, the penalty lottery has significant advantages over the day-fine system. Under

the penalty lottery, a unit of (ex-ante) fine payment is based on the offender’s willingness

to commit misdemeanors, so it endogenously implements the day-fine system currently

employed in some developed countries. At best, the day-fine system can be justified when

4Under joint and several liability in tort claims, a plaintiff may recover all the damages from any of the
defendants, regardless of their share of the liability. In the sense that the winner of the penalty lottery
takes the whole accumulated fines, the idea is understood as one particular rule of joint and several
liability.
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the personal daily income works as a proxy for how strongly the offender minds paying

the fine. The penalty lottery makes them directly reveal their true willingness.

Testing this new institution and citizens’ responses to it in real-world jurisdictions

is challenging, especially when we do not know whether there are unexpected adverse

outcomes from the institutional change. In particular, although joint and several liability

in tort claims has some related features, behavioral responses to the payment of the

other’s fines have not been reported, so we are unsure how people would behave under

this new institution. This is why I propose using laboratory experiments as a testbed.

I consider two treatments in each of them differs in the probability (q ∈ {0.1,0.5}) of

accumulating the fine rather than paying it. The treatment with q = 0.1 works as a base-

line experiment, which mimics the current rule of the game. During the experiment, one

subject per each round either chooses a red ball (corresponding to a law-abiding action)

or a blue ball (a violation of a law), knowing how many black stickers (accumulated fines)

are in the common pool that the group members share. When the subject chooses a blue

ball, a black sticker is attached to the blue ball with a 30% chance. That is, the proba-

bility of his action being monitored is 0.3. In the case of drawing a blue ball with a black

sticker, the black sticker is accumulated to the common pool with probability q. However,

with the other probability 1− q, he will keep the black sticker and all the stickers in the

common pool. Subjects get paid based on the number of red balls, blue balls, and black

stickers that they have kept during the experiment. After the main experiment and the

post-experiment survey, the subjects’ risk preferences were measured by the Bomb Risk

Elicitation Task (Crosetto and Filippin, 2013).

The experimental evidence is largely consistent with the theoretical predictions. First,

as more black stickers (fines) are accumulated in the common pool, fewer subjects chose

the blue ball (violation). Although the treatment with q = 0.5 gives more incentives for

them to choose the blue ball as the joint probability of getting the stickers is low, the

accumulation of the black stickers leads them to choose the red ball (law-abiding action)

about two times more frequently than those in the treatment with q = 0.1.5 Second, risk-

seeking behavior does not pay better under the treatment with q = 0.5. When q = 0.1,

taking the risk of getting the black stickers is beneficial, so there is a significant negative

relationship between risk aversion and earnings in the main experiment. When q = 0.5,

however, the negative relationship is completely nullified.

The rest of the paper is organized as follows. In the following subsection, we discuss

the related literature. Section 2 describes the model and provides the main theoretical

implications. Section 3 describes the experiments, and Section 4 reports experimental

5This result communicates to Drago et al. (2009), who examine the behavioral responses of (exogenously
determined) heavier penalties to recidivism by using a natural field experiment.
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findings. Section 5 discusses various issues, including comparisons with other mecha-

nisms, the use of information technologies to ensure common knowledge, and the objec-

tive of local government, and Section 6 concludes. Proofs of the lemmas and propositions

are provided in Appendix A, and the sample instructions for the experiment are in Ap-

pendix B.

1.1 Related Literature

This study is inspired by Gerardi et al. (2016), Duffy and Matros (2014), and Bhat-

tacharya et al. (2014), who study how an institutional change affects voter turnout. Ger-

ardi et al. (2016) compare a lottery (giving a prize to one voter of the turnout) with a fine

(to those who do not turn out to vote), and Duffy and Matros (2014) consider a combined

mechanism in which the fines imposed on non-participants are used to finance the prize

of the lottery winner. In a similar vein, Bhattacharya et al. (2014) compare compulsory

voting with voluntary voting. In a sense that we examine how an institutional change

drives citizens to behave more desirably, this paper contributes to the literature on the

impact of institutional changes.

This study is also related to imperfect public monitoring of the behavior of producing

public bads. Ambrus and Greiner (2012) report how imperfect monitoring, compared

with perfect monitoring, changes the contribution behavior in public good contribution

games with a costly punishment option. Their experimental evidence shows that access

to a standard punishment technology significantly decreases net payoffs even in the long

run, and access to a severe punishment technology leads to roughly the same payoffs as

with no punishment option. This finding implies that it is hard to make individuals act in

a socially desirable way, even if a severe punishment is adopted. The main advantage of

the penalty lottery over a simple severe punishment is that it works well under imperfect

monitoring.

Using lotteries in a non-standard setting is not a new idea. Kearney et al. (2010)

overview prize-linked savings (PLS) accounts, which essentially provide ‘no-lose’ lottery

tickets to savers, and Filiz-Ozbay et al. (2015) examine the validity of PLS using lab

experiments.6 Morgan (2000) theoretically shows that funding public goods utilizing

lotteries outperforms voluntary contributions in that lotteries increase the provision of

public good close to the first-best level, and the theoretical predictions are consistent

with the experimental findings of Morgan and Sefton (2000). Kim (2021) provides an ex-

perimental evidence that a lottery for encouraging vaccination works better than a small

6Texas Proposition 7: Financial Institutions to Offer Prizes to Promote Savings Amendment was ap-
proved on November 7, 2017. This proposition allows banks and credit unions in Texas to offer PLS
accounts as a savings option.
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lump-sum transfer, especially to probability-weighting subjects. The penalty lottery may

seem as odd as it gets, but turnout lotteries, voluntary contribution lotteries, and savings

lotteries had also been odd until they were explored in academia.

2 Theoretical Framework and Implications

Although the model can be applied to general situations of sequential public bad pro-

duction under imperfect monitoring for punishment, we consider a problem of conducting

a misdemeanor for clearer illustration. Violating the law for one’s own sake can be read

as producing a public bad.

Consider a society with a continuum of citizens indexed by i. A random citizen

sequentially7 faces a problem of wrongdoing for his/her own benefit at a discrete time

t ∈N+.8 For terminological clarity, I call those who violate the law as “wrongdoers” and

some of the wrongdoers who are caught by a police officer as “violators.” Let Bi denote

the units of benefit from wrongdoing, Ci denote the units of cost to abide by the law, and

F denote the amount of the fine. To make the problem nontrivial, assume that F > 0,

Bi > Ci > 0, and (1−p)ui(Bi)+pui(Bi−F)> ui(−Ci), where p ∈ (0,1) is the common prob-

ability of being monitored (hence ticketed),9 and ui(·) is an increasing concave utility

function of citizen i. That is, the expected utility of wrongdoing is greater than that of

paying the cost of abiding by the law for all i. In this scenario, every citizen is better off

by wrongdoing.

Now I consider one additional state variable. A violator is asked to pay the fine with

probability 1− q. With probability q, the violator passes the responsibility of the fine

to the next violator, and the fine is accumulated to a public account. Let Ft denote the

accumulated fines at time t, with F0 = 0. That is, at time t, a citizen faces a problem of

choosing either Bi or Ci while knowing that the probability of paying the fine, Ft +F, is

p(1− q). The timing of the event is described in Figure 1. Note that the typical rule of

the game is nested in this institution as a special case with q = 0. I assume here that the

local government’s goal is to minimize infractions and misdemeanors.10

7Their decisions are independent of what others are doing. This sequential arrival can also be inter-
preted that each citizen does not encounter others in a situation where wrongdoing is considered.

8Alternatively, we can consider that each of n citizens sequentially arrives at t = (τ−1)n+ i,τ ∈ N+,
where the finite number of citizens and the circular time index are used for lab experiments. It does not
mean that the model should assume that every citizen decides on a circular queue.

9It is worth noting that the subjective belief about such a probability may vary by individual and change
over time. Hjalmarsson (2008) reports that the perceived punishment severity discontinuously increases
with the age of the criminal majority. However, the model predictions are largely unaffected when we
replace the common probability p with a subjective probability pi.

10Considering that the state court system’s budget typically relies on funding from traffic citations as a
source of revenue, this may not be a trivial assumption. This is discussed further in Section 5.
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Figure 1: Timing of events

· · · Citizen i
Ft

at t
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−Ci

Ft+1 = Ft
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{
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p
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q
(accumulated)

{
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1− q
(charged)

{
Bi −Ft −F
Ft+1 = 0

· · ·
Ft+1

at t+1

For any q ∈ [0,1), a finite number of citizens would violate the law as the probability

to pay the fine, p(1−q), is lower than p. However, once the fines are sufficiently accumu-

lated, the expected benefit of wrongdoing is no longer greater than the cost of abiding by

the law. Specifically, for any τ such that (1−p+pq)ui(Bi)+p(1−q)ui(B−(Fτ+F))≤ ui(−C),

rational citizen i would not violate the law. For risk-neutral citizen i, there exists ki ∈N+
such that ki =

⌈
Bi+Ci

p(1−q)F

⌉
−1, where ⌈x⌉ is the smallest integer larger than x, if there are ki

consecutive violators who have not paid the fines, citizen i will not violate the law after-

wards. Since ki is a cutoff level of fine accumulation for a risk-neutral citizen, ki can be

understood as the upper bound11 of cutoffs for any degree of risk aversion. Although this

model deals with three types of heterogeneities, all the other various dimensions of indi-

vidual heterogeneities can also be summarized by ki, and ki is interpreted as a degree

of willingness to violate the law. Let k̄ denote maxi ki, and G(k) denote the cumulative

distribution of ki. The actual number of wrongdoers varies by how many violators hap-

pened to pay the fines before reaching Ft = k̄F. However, the probability of k̄ consecutive

accumulations approaches one as time goes by. Let P(V |t; p) be the ex-ante probabil-

ity that a violation is observed after t periods when the probability being monitored is

p ∈ (0,1). Let P(V |t) denote P(V |t; p) whenever p is not of interest.

Proposition 1. For q ∈ (0,1), P(V |t) is monotone decreasing in t. The expected time to
reach P(V |t)= 0 is finite. If q = 0, P(V |t)= 1 for any t.

Proof: See Appendix.

11The assumption of weak concavity of the utility function applies here. If some citizens have a convex
utility function, which implies that they enjoy taking risks, then they may have a higher cutoff threshold
than ki.
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Proposition 1 becomes intuitive if we consider a homogeneous economy where ui = u,

Bi = B, and Ci = C for all i. Then P(V |t; p) approximates the probability that a suc-

cess run of at least length k for an event with a probability of q occurs at least once

within pt12 number of trials. The nondecreasing probability of success run in the num-

ber of trials implies that for a longer period, it becomes more likely to reach the thresh-

old kF, and no one will violate the law with a higher probability. For example, if

{B,C,F, p, q} = {5,1,8,0.4,0.5}, k = 3(= ⌈ 5+1
0.4·0.5·8

⌉− 1), and the probability of at least 3

consecutive accumulations in 100 periods is 95.66%. Such a probability monotonically

increases in t.
In sum, after the society consecutively accumulates k fines, it reaches a ‘steady state’

where no one violates the law. This result is not the main theoretical insight. Although

we ascertained that the penalty lottery may lead to the complete elimination of sequen-

tial public bad production in the long run, it is based on the bounded heterogeneities

of the citizens’ characteristics. When individuals are more heterogeneous, for example,

even when a minuscule fraction of the population with k̄+1 added to the society, a sub-

stantial (in the magnitude of power of k̄+1) delay in reaching the steady state is expected.

Simply put, the steady state would not practically be reached. Proposition 2 summarizes

this claim.

Proposition 2. The expected number of time periods reaching the steady state starting
from zero fine accumulations is

1
pq

k̄−1∑
i=0

1
(1−G(i))qi ,

and it implies that if G̃(k) is the mean-preserving spread of G(k) with a larger k̄, and
P̃(V |t) is the ex-ante probability under G̃(k), P̃(V |t)≥ P(V |t).

Proof: See Appendix.

For an illustration of Proposition 2, consider a society where half of the citizens have

kl = 1, and the other half have kh = 3. Then, until kl fines are consecutively accumulated,

everyone will violate the law, and for any given time t, pt violations on average will be

monitored. However, when kl fines are consecutively accumulated, only half of the pop-

ulation would still violate the law, and for any given additional time τ, 1
2 pτ violations

on average will be monitored. Two additional fines need to be consecutively accumu-

lated with a smaller number (1
2 pτ instead of pτ) of probabilistic trials, so it must take

12Since we consider imperfect monitoring and only p proportion of the whole wrongdoings are monitored,
only tp periods out of t can be considered as Bernoulli trials, on average.
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Figure 2: Finite-State Absorbing Markov Chain and Transition Probability Matrices

0F 1F 2F 3F1− pq
pq

(1− G̃(1))p(1− q)

G̃(1)+ (1− G̃(1))(1− p)

(1− G̃(1))pq

(1− G̃(2))p(1− q)

G̃(2)+ (1− G̃(2))(1− p)

(1− G̃(2))pq
1

TG =
 1− pq pq 0

p(1− q) 1− p pq
0 0 1

 TG̃ =


1− pq pq 0 0

(p− pq)/2 (2− p)/2 pq/2 0
(p− pq)/2 0 (2− p)/2 pq/2

0 0 0 1


Consider G̃(k), a mean-preserving spread of a degenerate distribution at 2, where g(1) = g(3) = 0.5. The
probability of reaching the final node from the initial node after t periods, (T t

G̃
)1,kh+1, is smaller than

(T t
G)1,k+1.

a longer time to reach the steady state, compared with a homogeneous society where

ki = 2 for all i. Worse yet, if someone with kh = 3 pays all the accumulated fines before

reaching Ft = khF, then the entire population starts violating the law again. Figure 2

illustrates the Markov chain and the corresponding transition probability matrices for

the aforementioned example. The probability of observing a violation after t periods is

the first element of the last column in T t, where T is the transition probability matrix.

Although the above example considered drastically different distributions, a minuscule

change can lead to a significant delay. When the society consists of homogeneous citizens

with ki = 2, the probability that a violation is observed after 100 periods is 0.32% (with

p = 0.3, q = 0.5), while if 1% of the population has ki = 3 instead, such a probability

skyrockets to 88.95%. More interestingly, compared with a society with 99% of ki = 2

citizens and 1% of ki = 3 citizens, if 99.9% of citizens are of ki = 2 and 0.1% of them are

of ki = 3, such a probability is 98.81%, even larger than 88.95%. This illustration implies

that even when the society’s average willingness to produce public bads decreases (from

2.01 to 2.001), the time reaching the absorbing state can be longer.

A naturally followed question is whether the penalty lottery is desirable for sub-

stantively longer before-the-steady-state periods. The answer is yes, as it endogenously
imposes the larger expected fines to those who are more likely to violate the law.

Corollary 1. Let φ(ki) be the ex-ante expected fine for an individual with ki. φ(ki) is
increasing.
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Proof: φ(ki) = ∑ki
κ=0 p(κ)(κ+1) is the ex-ante expected fine for an individual with ki,

where p(κ) is the ex-ante probability that κ fines have been accumulated.

This result implies that the penalty lottery induces an endogenous price discrimina-

tion: The more willing a citizen is to violate the law, the larger expected fines.13 Among

the various dimensions of individual heterogeneities leading to different ki, I focus on a

few crucial dimensions: risk aversions, heterogeneous benefits, Bi, and some social pref-

erences. Corollary 1 implies that those who have more benefits from wrongdoing and

those who are more risk-seeking self-select to pay the higher ex-ante expected fines. The

risk-averse citizens have a small ki: As the fines are accumulated more, the possible

payoffs become more volatile. Thus, their expected benefit of wrongdoing decreases with

risk aversion. A similar logic applies to those who have a larger Bi. As the fines are ac-

cumulated more, a smaller fraction of citizens with higher Bi would remain wrongdoers.

Interpreting Bi
F as a subjective value of the fine,14 the higher ex-ante expected fine for

those with a higher Bi would naturally implement a day-fine system. Lying-averse citi-

zens or sincere citizens can be understood as those with Bi = 0. Therefore, lying-averse

citizens would not be wrongdoers no matter what q is, and the institutional change does

not affect their decisions. If citizens have heterogeneous other-regarding preferences,

especially inequity aversions, then those with a higher inequity aversion would have

a lower ki. When Ft > 0, a wrongdoer is voluntarily taking the possibility of paying

previous violators’ fines, which exacerbate the inequity between him and the previous

violators (who committed the same infraction). All in all, the effect of the institutional

change would be significant and is robust to heterogeneities in individual characteristics.

3 Experimental Design and Procedure

To the best of my knowledge, behavioral responses to the (potential) payment of the

other’s penalties have not been reported, so it is unclear whether the institutional change

would work in the desired direction. This is why controlled lab experiments are used as

a testbed.

Having abstract framing15 in mind, I consider two experimental treatments that dif-

13On the contrary, if the penalty size is unilaterally increased to deter wrongdoing, it would work as
adverse price discrimination. Those with a little willingness to violate the law are deterred more strongly
than those with a high willingness.

14More often than not, the benefits of wrongdoing are not measurable, while the fine, especially if it is
a monetary penalty, is. From the perspective of the rich, F could be relatively minor compared with their
wealth. In this case, a higher Bi

F could mean that citizen i subjectively undervalues the fine.
15Although the design of experiments to test the effect of the institutional change might be straight-

forward, one of the critical challenges in this particular context is to maintain abstract framing. I avoid
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Table 1: Experimental Design and Summary of Hypotheses
Treatment p q p(1− q) k P(V|t = 60)

Mq 0.3 0.5 0.15 4 56.19%
Lq 0.3 0.1 0.27 2 85.44%

Each session consists of 60 consecutive rounds. In each round, one subject among a group of four chooses
either a red ball or a blue ball. A red ball has a value of −1. A blue ball has a value of 5, but with
probability p, it entails a black sticker whose value is −8. The black sticker is collected to the common
pool with probability q.

fer in the probability of penalty accumulation (q). For notational simplicity, the treat-

ment with q = 0.1 is called Lq (Low q), and the other treatment with q = 0.5 is called Mq

(Middle q). Table 1 summarizes the design of the experiments.

The basic procedure of an experimental session is as follows: Each subject is endowed

with 100 tokens (the experimental currency units) in his/her account. Each subject is

randomly grouped with three other subjects and sequentially decides within the group.

The experiment consists of 60 decision-making rounds, so each subject made 15 deci-

sions.16 When a subject is on her turn, she is asked to choose either a red ball or a blue

ball, while knowing how many black stickers are accumulated in the common pool shared

by the group members. In the beginning, there are no black stickers in the common pool.

Keeping a red ball ends her turn. When choosing a blue ball, with a probability of 0.3,

a black sticker is attached to the blue ball, and with the complementary probability of

0.7, no black sticker is followed. If a black sticker is attached, the computer determines

where the black sticker goes. With probability q, the black sticker is removed from the

blue ball and added to the common pool. With probability 1− q, the subject keeps the

black sticker as well as all the black stickers from the common pool. In each turn, a

subject does not know which balls other subjects have chosen but knows how many black

stickers are accumulated in the common pool. At the end of the session, the total payoff

of a subject who has x red balls, y blue balls, and z black stickers is 100−x+5y−8z. That

is, each red ball (the cost of abiding by the law) is worth −1 token, each blue ball (the

using terms such as “wrongdoing," “violations," “fines,” and “misdemeanors”: Otherwise, interpretations of
the experimental results could be confounded as there could exist an experimenter-demand effect (Zizzo,
2010). It is also known that subjects are heterogeneous regarding internalizing the social norms (Kim-
brough and Vostroknutov, 2016), so the statistical analysis would have less power to conclude when the
particular frame of violating a law is considered.

16There are two reasons why a subject makes 15 separate decisions rather than 15 consecutive decisions
as a single player. First, if 15 consecutive decisions were to be made, then the state variable of the next
round (the number of black stickers in the common pool) is endogenously affected by the previous deci-
sion while having three decisions between a single subject’s actions significantly dilutes such endogeneity.
Second, although it would be ideal if the size of the group is larger, considering the typical capacity of a
laboratory, the group size of four was practically optimal as it is large enough for diluting endogeneity as
well as small enough for collecting many observations within a limited time.
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benefits of wrongdoing) is worth +5 tokens, and each black sticker (the fine) is worth −8

tokens.

Two treatments that I do not conduct may be worth mentioning. First, when a subject

makes a decision, how other subjects had acted is not known to her. Although it is

likely that knowing other subjects’ decisions would affect the subject to some degree

and it would be interesting to know to what extent an indirect social pressure impacts,

the primary purpose of the experiments is not on examining such an impact. Second,

instead of having q = 0, I consider treatments with q = 0.1 as a baseline experiment.

Several studies including Tversky and Kahneman (1981) and Martínez-Marquina et al.

(2019) have reported that an individual’s behavior under zero probability (or certainty) is

distinctively different from that under near-zero probability (or near-certainty), and it is

also known that people tend to treat complex lotteries differently than simple lotteries,

even when those two lotteries are equivalent (Huck and Weizsäcker, 1999). Thus, it is

asserted that individual decisions on probabilistic events should be compared with those

on other probabilistic events, not deterministic events.17

Experiments were conducted at the Mannheim Laboratory for Experimental Eco-

nomics (mLab) from February to April 2018. Three sessions were run for each treatment,

with 20 to 24 subjects (or 5 to 6 independent groups of four) each. A total of 128 subjects

participated in one of the sessions. The participants were drawn from the mLab subject

pool. Python and its application Pygame were used to computerize the games and to es-

tablish a server–client platform. All experimental sessions were organized along with the

same procedure: After the subjects were randomly assigned to separate desks equipped

with a computer interface, they were asked to read the instructions (see Appendix B) of

the experiment carefully. After the experimenter read the instructions out loud, the sub-

jects spent time reviewing the instructions and took a quiz to prove their understanding

of the experiment. Those who failed the quiz were asked to read the instructions and

retake the quiz until they passed. An instructor answered all questions until every par-

ticipant thoroughly understood the experiment. Although each of the subjects belonged

to a group of four, there was no physical reallocation of the subjects, and they only knew

that they were randomly grouped. They were not allowed to communicate with other

participants during the experiment. It was also emphasized to participants that their

decisions would be anonymous, and that no deception is employed. At the end of the

main experiment, they were asked to fill out a post-experiment survey and participate

17Given that q must not be zero in the baseline, another practical reason for considering q = 0.1, not
lower than 0.1, is that subjects may find the joint probability to be more complicated than the Mq treat-
ment. During the pilot session, q = 0.05 was used, and many subjects struggled to instantly figure out the
joint probability p(1− q)= 0.285.
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in another paid task without detailed instructions.18

At the end of the post-experiment survey, the subjects’ risk preferences were mea-

sured by an additionally paid Bomb Risk Elicitation Task (BRET) (Crosetto and Filip-

pin, 2013). BRET is known to be a parsimonious but accurate way to elicit one’s risk

preference: One box among 36 boxes19 hides a bomb, and a subject collects as many as

boxes she wants without knowing where the bomb is hidden. If the bomb was in one

of the boxes collected, she earns zero. If the bomb was not in the boxes collected, she

earns e0.11 for each chosen box. The total amount of tokens that each subject earned

during the main session was converted into Euro at the rate of e0.08/token.20 Payments

(e11.94 on average, including the earnings from BRET) were made in private at the end

of the session, and subjects were asked not to share their payment information. Each

session lasted approximately 1 hour.

4 Experimental Results

To summarize the results, the experimental evidence is largely consistent with the

theoretical predictions.21 First, the proportion of wrongdoers approaches 0 as the size of

the accumulated fines increases. Second, risk-seekers are not better off than the risk-

averse agents in the Mq treatment, while risk-seekers are better off in the Lq treatment.

Table 2: Data Summary

Treatment
Number of Red Balls Blue Balls (%)
Subjects (%) w/o Sticker Common Subject

Mq 64 18.33 58.75 10.21 12.71
Lq 64 8.85 64.17 3.02 23.96

Table 2 summarizes the data. A total of 128 subjects (64 in each treatment) partici-

pated in one of the sessions. Red Balls refer to the percentage of the actual choices of red

balls. The number of black stickers in the common pool affects subjects’ choices, which

will be examined shortly. There are three cases when a subject chose a blue ball. Blue
18The instructions of BRET were provided at the end of the post-experiment survey.
19Crosetto and Filippin (2013) use 100 boxes, but this study used fewer boxes to shorten the time that the

participants spent after the main task was done. Although more boxes with a smaller per-box payoff would
provide finer elicitation of the risk preferences, the number of boxes does not affect the risk preference per
se.

20Subjects were instructed that the currency exchange should not be a concern as the server computer
would handle it. The exchange rate of e0.08/token is chosen to make the average earning close to the
desired size of payments.

21The replication package, including the entire dataset, is available in the Open Science Foundation
repository q7ykx.
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Balls w/o Sticker refers to the case where the subject chose a blue ball, and it came with-

out a black sticker. Blue Balls Common refers to the case where the subject chose a blue

ball, it came with a black sticker, and the sticker is added to the common pool. Blue Balls

Subject refers to the case where the subject chose a blue ball, it came with a black sticker,

and the sticker, as well as all the stickers in the common pool, are added to the subject’s

account. The results are well randomized. In the Lq treatment, for example, given that

a blue ball was chosen for 91.15% of the whole decision-making rounds, the fraction of

those three cases would be close to 63.81% (=0.7*91.15), 2.73% (=0.3*91.15*0.1), and

24.61% (=0.3*91.15*0.9), respectively. Also, it seems that abstract framing worked prop-

erly: For 96.25% of all decision-making rounds in the Mq treatment, choosing a blue ball

maximizes the subject’s (risk-neutral) expected payoff, and in 83.12% of such rounds the

blue ball was chosen. Similarly, among 96.88% of the decision-making rounds in the Lq
treatment, the blue ball was chosen in 93.01% of such rounds. If subjects viewed the

problems faced during the experiment as a situation of violating the law for the sake of

their benefits, the fraction of the blue ball choices might have been much lower.

4.1 Responses to Penalty Accumulations

One desirable observation is that subjects respond to the number of black stickers in

the common pool. Figure 3 shows how many red balls were chosen for different numbers

of black stickers in the common pool. In both treatments, it is upward sloping, which

implies that the more fines are accumulated, the fewer subjects choose to produce a

public bad. In the Mq treatment, if the number of accumulated black stickers in the

common pool exceeds 4, it is indeed not beneficial for risk-neutral subjects to choose a

blue ball. Except for one subject who consistently chose a blue ball when five stickers

are in the common pool and another subject who did so in the final round, everyone else

chose a red ball. In the Lq treatment, the maximum number of stickers in the common

pool is 2, which is consistent with the theoretical prediction. Unlike realistic situations,

the experiment has a last round, and subjects may choose a riskier option in their last

round. Such a “last round effect” is statistically insignificant (see the blue dashed lines

in Figure 3).

Table 3 summarizes some of the regression results. Throughout all of the regression

models being considered, three explanatory variables are statistically significant at the

1% level: the number of black stickers in the common pool (ComBlack), the subject’s

previous action of choosing a red ball (prevRed), and the decision rounds (DRound). Con-

sistent with the theoretical prediction and the trend shown in Figure 3, subjects actively

respond to the number of black stickers in the common pool after controlling for other

explanations. Controlling for other factors, the subjects tend to choose a red ball in later
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Figure 3: Proportions of Red Ball Choices
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Table 3: Red Ball Choices

LPM Logit
(1) (2) (3) (4) (5)

ComBlack 0.2961 0.2953 0.2253 2.2648 1.9263
(0.0413) (0.0421) (0.0403) (0.3253) (0.3344)

SubjBlack −0.0182 −0.0188 −0.0127 −0.1557 −0.1072
(0.0086) (0.0091) (0.0072) (0.0834) (0.0717)

Mq 0.0012 0.0051 −0.0008 0.5629 0.4694
(0.0258) (0.0261) (0.0185) (0.4520) (0.3502)

ComBlack×Mq −0.1459 −0.1463 −0.1039 −1.3319 −1.1249
(0.0466) (0.0476) (0.0414) (0.3829) (0.3612)

DRound 0.0113 0.0115 0.0080 0.1142 0.0730
(0.0028) (0.0029) (0.0023) (0.0271) (0.0246)

prevRed 0.3238 1.8969
(0.0597) (0.3535)

prevBCom 0.0325 0.4166
(0.0403) (0.3087)

prevBSubj 0.0036 −0.3458
(0.0133) (0.3596)

cons. −0.0190 −0.1970 −0.1066 −5.9808 −5.0881
(0.0148) (0.1559) (0.1095) (1.7613) (1.3167)

Indiv.Chars. Excluded Included Included Included Included
R2 0.2711 0.2866 0.3651 0.3036 0.3657
N 1,920 1,920 1,664 1,920 1,664

The dependent variable is the choice of a red ball. ComBlack is the number of black stickers in the common
pool, and SubjBlack is the number of black stickers that the subject has kept. Mq is a binary variable
indicating whether the treatment of the session was Mq. DRound is the decision round varying from 1 to
15. prevRed, prevBCom, and prevBSubj are binary variables respectively indicating whether the subject
chose a red ball in the previous turn, whether she chose a blue ball followed by a black sticker added to the
common pool, and whether she chose a blue ball followed by a sticker and kept all the stickers including
ones in the common pool, respectively. Standard errors clustered at the subject level are in parenthesis.
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decision rounds, and the subjects are more likely to choose a red ball once they chose

it in the previous round. It is also reasonable that subjects respond more vigilantly

under the Lq treatment, which is captured by negative estimates of the coefficient of

ComBlack×Mq,22 where Mq is a binary variable indicating whether the treatment of the

session was Mq. This is because k, the theoretical threshold for a risk-neutral agent to

start choosing red balls, is 4 in the Mq treatment, while it is 2 in the Lq treatment. The

positive relationship between a previous red ball choice and a current red ball choice im-

plies that some subjects consistently chose red balls: Perhaps they are more risk-averse,

more reluctant to take any action that has the potential to negatively impact the other

members’ payoffs, or more inequity averse.

The previous realization of a probabilistic event also affects subjects’ decisions in the

following round, especially when the realization is a loss, as many previous experimen-

tal studies regarding decision making under uncertainty report so (Imas, 2016). When

a subject chose a blue ball in the previous round, and it led him to keep the black stick-

ers, including ones in the common pool (labeled as prevBSubj in the regression table),

he tends to choose a blue ball again in the following round. However, this risk-taking

behavior after a loss is not as significant as the effect of the number of black stickers in

the common pool. Also, some individual characteristics collected by the after-experiment

survey—gender, age, self-confidence in their performance of the experiment, and famil-

iarity with this type of experiment—were insignificant.

It is worth mentioning that an income effect would be a valid concern. Since in every

decision round, the participants could see the accumulated numbers of red balls, blue

balls, and black stickers and how each item is worth (see the screenshots in the online

appendix), it is possible for them to accurately calculate the accumulated earnings. Also,

since the initial endowment of 100 tokens may work as a reference for determining gains

and losses, the subjects’ decisions might be different if the accumulated earnings are

below or above 100 tokens. To check these potential income effects, I added a dummy

variable indicating whether the current earning level is below 100 tokens to the regres-

sion models (1)–(3) of red ball choices in Table 3. The estimates of the dummy variable

are statistically insignificant in the three models. Regressions with another dummy vari-

able, indicating whether the accumulated earning level is between 95 and 99 (so that the

current decision could allow them to earn 100 or more) and yet another dummy variable

indicating the level between 101 and 105 (so that their decision could result in them

earning 100 or less) show that the red ball choices are not affected. Finally, the effect of

22Although all the estimated coefficients of ComBlack×Mq are unilaterally negative, the interpretation
should be only based on the linear probability models, as it is known that interaction terms in a Logit
model do not have a clean interpretation (Ai and Norton, 2003).
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the accumulated earning level is not significant either.23

4.2 Risk Seeking does not Pay

Another crucial theoretical prediction is regarding self-selection: Those who are more

risk-seeking are self-selecting to pay the higher ex-ante expected fines. This evidence

implies that risk-taking actions will be paid less under the penalty lottery. The exper-

imental evidence supports this claim. Figure 4 shows scatter plots and fitted lines of

earnings (from the main experiment) with respect to the number of boxes collected in

BRET. A subject’s risk preference is elicited by the number of boxes collected in BRET:

As she collects more boxes, both the probability that the bomb is included in one of the

boxes collected and the payoff when the bomb is not included in one of them increase.

Thus, a natural interpretation is that those who collect more boxes in BRET are more

risk seeking. In the Lq treatment, those who are more risk-seeking are paid more: Those

who collect one more box in BRET earn, on average, 0.83 tokens more (p = 0.032). In the

Mq treatment, however, there is no linear relationship (p = 0.918) between earnings and

the number of boxes collected in BRET. The two-sample Kolmogorov-Smirnov test does

not reject the hypothesis that the distributions of the two sample datasets on the boxes

collected are different (D = 0.1235, p = 0.737), so it can be regarded that risk-taking

behaviors per se are similar in both treatments.

This result, the null relationship between risk preferences and earnings under the

penalty lottery, must require careful interpretation. Choosing a risky option (a blue ball)

can increase the expected payoff when the expected loss (the number of black stickers

in the common pool) is not substantial. That is, even with the penalty lottery, some

risk-takers would still be better off than the risk-averse. In this regard, a more accurate

but verbose title for this subsection should be “risk-seeking pays less than what it used

to pay without the penalty lottery." What we should look into further is the variance of

the earnings. Table 4 shows the F-test results of the equality of variances. In the Mq
treatment, the variance of the earnings of the subjects whose risk preferences are in the

top half is significantly larger than the variance of those in the bottom half. In the Lq
treatment, such a difference in variances is not found. This result demonstrates how the

penalty lottery works in a way to prevent risk-takers from earning more: Although it is,

in general, correct that a high risk yields a high return, with the penalty lottery, a high

risk brings higher volatility in payoffs.

One caveat in interpreting the relationship between the earnings from the main ex-

periment and the risk preferences elicited from BRET is that the decisions in BRET are

23The unreported regression results are available in the Open Science Foundation repository q7ykx.
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Figure 4: Risk Preferences and Earnings
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This figure shows scatter plots and fitted lines of earnings with respect to the number of boxes collected
in BRET. In the Mq treatment, there is no linear relationship between earnings and the number of boxes
collected in BRET. In the Lq treatment, however, those who are more risk-seeking are paid more.

Table 4: F-test of Equality of Variances
Mq Lq

St.dev.(Earnings St.dev.(Earnings St.dev.(Earnings St.dev.(Earnings
|Bi <Med(B j)) |Bi >Med(B j)) |Bi <Med(B j)) |Bi >Med(B j))

19.49 28.33 15.22 16.60
F29,28(2.1117)= 0.0256 F31,29(1.1888)= 0.3211
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assumed to be unaffected by the previous earnings. It should be admitted that there

might be an earning effect on the risk preferences, but I claim that there are at least

two reasons to believe that such an earning effect is weak. First, the earnings are more

dispersed in the Mq treatment, so if there were significant earning effects, then we could

have observed a stronger positive relationship between the earnings and the risk-seeking

behaviors, which is the opposite of what the data shows. Second, no interim income ef-

fects on the decisions in the main treatment (Section 4.1) suggest that the current in-

come level does not affect the decision in the subsequent task. Since the post-experiment

survey and the instructions for BRET were between the main experiment and BRET,

the time gap between the end of the main experiment and the beginning of BRET was

substantially longer than the time gap between the previous decision and the current

decision in the main experiment, which could attenuate the earning effect even further.

5 Discussions

5.1 Common knowledge of the accumulated fines

One maintained assumption which puts forward theoretical analysis is that the num-

ber of accumulated fines, Ft, is common knowledge. By harnessing existing information

technologies, it is not practically hard to provide such information. For example, elec-

tronic signboards on highways display varied information, such as the number of car ac-

cidents of the previous day in the neighboring area and the dynamic price of road usage

(Cramton et al., 2018), which change over time. Adding the current number of accumu-

lated fines to a digital display is not a practical challenge. Of course, for a smaller-scale

problem of bad uses of common resources, providing common knowledge must be easier.

Harnessing technologies to design better policies is not a new idea. Cramton et al.

(2019) claim to consider efficient pricing of road usage that dynamically depends on the

time and the location, while arguing that advances in mobile communications make it

possible to access a precise measurement of road use and real-time traffic information.

Shoup (2017) recommends that cities should charge fair market prices for on-street park-

ing that dynamically respond to demands. The successful outcomes from several reforms,

including the most notable ongoing experiment in San Francisco called SFPark, show

that the parking reforms are indeed practical and realistic. If it is practical and realis-

tic to become informed about the dynamic pricing of the parking meter, then it is also

practical to inform oneself about the accumulated fines.

Nonetheless, when the costs of providing common knowledge to a large population

are not negligible, the penalty lottery can still be used for small-scale public bad mini-
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mization. For example, when roommates share a kitchen, informing every roommate of

the accumulated costs to clean the kitchen mess so far must not be costly. A sign in front

of a public restroom informing people of extra maintenance costs due to abuses of many

random passersby should convey necessary information at no cost. My claim is that the

costs of providing common knowledge, if unavoidable, are a determinant to the size of

the penalty lottery mechanism, not the reason for rejecting this idea.

5.2 Budget constraint of the poor violator

The budget constraint of a violator is not considered in this paper. Provided that the

concerns for common knowledge are cleared, the budget-constrained agent will decide

not to produce a public bad from the point it is not worth doing so. Therefore, more ac-

cumulated fines do not affect the budget-constrained agent at all. Perhaps the following

analogy is more intuitive: A longer prison sentence for a felony does not affect ordinary

people’s ordinary lives as they do not commit a crime. Analogously, someone who decides

not to violate a law would not worry about receiving a larger fine that they cannot afford,

because it is a worry for naught.

When it comes to an unfortunate nature of a pure mistake, no penalty system can be

free from such a concern. Some citizens could not afford a fixed but large fine. Under

the day-fine system, a pure mistake of a billionaire comes with a huge price tag. Does

it mean that the cost of a mistake should be different based on the daily income level?

Even worse, a fired CEO with an enormous previous-year income but no current income

might find the fine unaffordable if the ‘daily income’ is determined according to the tax

declaration of the previous year. The concerns about the discrepancy between theory

and practice are duly taken, but the possibility of mistakes due to cognitive limitation or

inattention cannot be the reason to stop discussing the idea, as this is not a particular

problem of the penalty lottery per se.

5.3 Minimization of distorted incentives on the margin

Although I have claimed neither that complete deterrence is the main advantage of

the penalty lottery nor that the absorbing state is easily reached, some may want to

know why this mechanism would be considered rather than imposing a massive fine

for complete deterrence. The primary reason is that distorted incentives on the margin

(Stigler, 1970) are much smaller under the penalty lottery.

Suppose a situation where a fine changes from F to kF with k ∈ (1, k̄]. Those who

have ki ≤ 1 will not produce a public bad, and those with ki > k will produce a public

bad regardless of the changes in the size of the penalty. Those with k ∈ (1, k̄] are “on the
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margin” because they are deterred due to the change. That is, for a significant fraction

(G(k)−G(1)) of the citizens, their incentives are distorted toward producing more public

bads. Under the penalty lottery, in each period with k accumulations, a smaller fraction

(g(k)) of the citizens have distorted incentives on the margin.

Another practical issue is that the policymaker typically does not know how large the

fine should be for it to be sufficient. Even if the policymaker could gauge k̄, the smallest

size of the fine for complete deterrence, that size does not guarantee the effectiveness in

the long run: Perhaps inflation might not be accounted for appropriately, or new citizens

might increase heterogeneities. Under the penalty lottery, the policymaker neither needs

to know k̄ nor needs to track the changes in k̄.

The uncertainty about k̄ may lead to another potential problem. The unilateral fine

increase, if not sufficient for complete deterrence, would deter the actions of citizens

with low willingness to produce public bads, while citizens with high willingness remain

undeterred. Put differently, relatively "better" citizens’ actions are distorted more. When

multiplying the fine by k, those with ki ≤ k will earn ui(−Ci), while those with ki > k
will earn the expected utility from producing public bads, which is greater than their

ui(−Ci).

5.4 The purpose of the local government

Although this paper claims that the penalty lottery would work in general situa-

tions of sequential public bad production under imperfect monitoring for punishment, it

should be admitted that reducing misdemeanors is one of the most relevant cases. If we

narrow down our focus to the elimination of misdemeanors, the primary objective of the

local government would matter because it affects the size of the fine and, therefore, the

validity of the penalty lottery.

The primary purpose of this study is not to investigate the optimal size of the fine. I

assume that a policymaker deliberately measures the negative externality of wrongdo-

ing, such that the fine is set at an appropriate level (Becker, 1968). That is, I assume

that the fine is equal to a Pigouvian tax to correct the negative externality incurred by

the wrongdoing24 plus the cost of enforcement execution. If the local government has a

balanced budget on misdemeanors, having no revenues with few violations, in the end, is

as good as having full (budget balanced) revenues with everyone’s violation. It is a plus

that in the course of attaining the steady state of no violations, the revenues are almost

the same while imposing larger fines to those who are more willing to violate the law.

24In this regard of interpreting the fines as indirect taxes, it makes more sense that speeding tickets are
more frequently issued to drivers who are not local constituents, as Makowsky and Stratmann (2009) find:
This is a way to increase tax revenues from the outside effectively.
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However, from many anecdotal pieces of evidence and some rigorous reports,25 we

know that the fundamental goal of the municipalities may not be on eliminating infrac-

tions and misdemeanors: Speeding and parking tickets to drivers could be considered

an essential revenue source for the local government. If the government’s purpose is

not to maximize the social welfare, but to maximize the revenue accrued from the fines,

minimizing misdemeanors is not in their interest at all. In this case, still, we can exploit

the idea of the penalty lottery by introducing a nonlinear penalty accumulation. Since q
can be dependent on the current level of accumulated fines, the policymaker of the local

municipality may want to set q(F) to maximize the tax revenue from the fines.

A novel type of time inconsistency problem may arise under the penalty lottery if the

government maximizes the tax revenue from the fines. Since the citizens self-select the

expected fines, the government will gradually know the type of each citizen better. In

particular, when a citizen produces a public bad and gets monitored when Fτ is accu-

mulated, the lower bound of their willingness to produce a public bad must be greater

than or equal to Fτ. Then, the government may want to use this information to design a

“personalized" penalty system based on the revealed willingness in later periods. How-

ever, this personalized penalty may be problematic in the sense that this system does

not charge the same fine for those with the same willingness to produce a public bad.

5.5 Sincere vs. rational non-violators

Thus far, it has been assumed that Bi > Ci > 0 and (1−p)ui(Bi)+pui(Bi−F)≥ ui(−Ci)

for all i, to start from a benchmark case where everyone is better off by producing a

public bad. If we relax these assumptions, there could be some citizens who will not

produce a public bad under the standard rule of the game. In the context of conducting

misdemeanors, I call citizen i with ui(Bi) ≤ ui(−Ci) as a sincere non-violator because

he does not violate the law regardless of p, and citizen j whose utility function satisfies

u j(B j)> u j(−C j) and (1−p)u j(B j)+pu j(B j−F)≤ u j(−C j) as a rational non-violator. That

is, while the penalty lottery does not give an incentive to sincere non-violators to violate

the law, it does give an incentive to some rational non-violators if q is too large. For a

rational non-violator j, there exists q j ∈ (0,1) such that for all q ≥ q j, (1− p+ pq)u j(B j)+
p(1− q)u j(B j −F)≥ u j(−C j).

Even when a large fraction of the population consists of rational non-violators, the

penalty lottery will work unless q is not overly high. Consider a ‘marginal’ citizen among

25Garrett and Wagner (2009) find that significantly more tickets are issued in the year following a de-
cline in revenue, but an increase in revenue does not lead to the smaller issuance of tickets. Makowsky
and Stratmann (2011) also find that budgetary shortfalls lead to the more frequent issuance of tickets to
drivers.
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rational non-violators such that (1− p)u j(B j)+ pu j(B j − F) = u j(−C j). This citizen is

called marginal because he is indifferent between violating and not violating the law

when q = 0, but for all q > 0, he violates the law if Ft = 0. Even if the marginal citizen

is risk-neutral, he will again abide by the law immediately after ⌈q/(1− q)⌉ fines are

accumulated. Thus, if q ≤ 0.5, then all the rational non-violators will not violate the law

when one fine is accumulated in the public account.

Also, I claim that it is not a bad idea to distinguish sincere non-violators from those

who strategically choose not to violate the law. Indeed, their violations can be increased

without the introduction of the penalty lottery: For example, if the monitoring capacity

were to be p(1− q) instead of p, they would have violated the law.

6 Concluding Remarks

This work proposes using lotteries to control public bad production under imperfect

monitoring for punishment. The fundamental idea is to randomly accumulate penalties

to a public account, rather than to ask each violator to pay the penalty. The penalty

lottery has many advantages over both the fixed fine system and the day-fine system.

It would not practically reach the steady state of complete deterrence so the theoretical

existence of the steady state is neither the main advantage of the penalty lottery nor

the main claim of this paper. The penalty lottery is desirable because it endogenously

imposes larger expected fines on those who are more willing to produce a public bad.

If the primary reason for endorsing the day-fine system is that it exogenously assigns

a larger fine for those who might have a higher willingness to produce public bads, the

penalty lottery has a significant advantage over the day-fine system because it endoge-

nously induces the day-fine system. This is particularly important if people believe the

current system, often cynically described as “evil pays better,” needs to be changed. The

experimental evidence broadly supports the theoretical predictions. In particular, evil

does not pay better in the sense that producing more public bads does not yield larger

payoffs.

Although efforts have been made to discuss some realistic issues, it is admitted that

this theoretical and experimental exercise may be far from its relevance for immedi-

ate practice. Further work should be followed both theoretically and experimentally, to

facilitate more discussions. As discussed, for instance, one question relates to the opti-

mal size of the population to which the mechanism should be applied. There must be a

trade-off relationship between the costs of providing common knowledge and the bene-

fits of the mechanism applied to a larger population. Future work is needed to examine

whether citizens would actually vote for the adoption of the penalty lottery compared to
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conventional fine mechanisms when society demands deterrence.
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A Appendix: Proofs

Approximation of k Consecutive Accumulations
First I introduce the method for calculating the probability that a success run of at

least length k for an event with a probability of q occurs at least once within n trials.

Regarding a success run of length κ ∈ {0,1, . . . ,k} as a state, we can construct the following

transition probability matrix, T of order k+1.

T =



1− q q 0 · · · 0

1− q 0 q · · · 0
...

...
... . . . ...

1− q 0 0 · · · q
0 0 0 · · · 1


,

where the probability of moving from state i to state j in one time period is Pr( j|i) =
Ti+1, j+1. For example, T23 = q is the probability of moving from a success run of length 1

to a success run of length 2. Then the entities of Tn are the probabilities of transitioning

from one given state to another state in n Bernoulli trials. We call a Markov chain

absorbing if there is at least one state such that the chain can never leave that state

once entered. That is, k is an absorbing state. A stationary probability vector π, which

does not change under application of the transition matrix, is (0,0, . . . ,1). That is, πT =π

and limn→∞(Tn)1,k+1 = 1.

Although this is the exact method to find the probability, Feller (2008) provides the

approximation of the probability that a success run of at least length k for an event with

a probability of q occurs at least once within n trials:
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qn ∼ 1− 1− qx
(k+1−kx)(1− q)

1
xn+1 ,

where qn is the probability of a success run of at least length k in n trials, and x is the

root of

Q(x)= 1− x+ (1− q)qkxk+1 = 0,

other than x = 1
q . The other root is smaller than 1

q if (1− q)(k+1) > 1. To check this, we

need to show

x∗ = argmin
x

Q(x)< 1
q

because for any x > 1
q , Q(x) is increasing. x∗ =

(
1

(1−q)qk(k+1)

)1/k
, and this is strictly smaller

than 1
q if and only if 1

(1−q)(k+1) < 1. When (1− q)(k+1)> 1, the other root must be greater

than 1 because Q(1) = (1− q)qk, but it is typically close to 1. Q(1) = (1− q)qk tends to be

small for a large k. This approximation renders an easier way to illustrate the theoreti-

cal predictions when citizens are homogeneous.

Proof of Proposition 1:
We apply the approximation of k consecutive accumulations to the relevant situations

that we have in mind: a sequential public bad production in a society of risk-neutral

homogeneous citizens. Suppose n violators (among n/p wrongdoers) sequentially arrive,

and each of the violators passes over his/her fine to the next violator with probability q
and pays all the accumulated fines with probability 1− q. The probability that the fines

are accumulated at least for k consecutive times is approximately 1− 1−qx
(k+1−kx)(1−q)

1
xn+1 .

Since every citizen violates the law whenever it is beneficial to do so, the probability that

a wrongdoer exists after n/p periods is

P(V |t = n/p)= 1− qx
(k+1−kx)(1− q)

1
xn+1 .

For the cases where we consider, the condition (1− q)(k+1)> 1 always holds because

k =
⌈

B+C
F p(1− q)

⌉
−1≥ B+C

F p(1− q)
−1⇔ (1− q)(k+1)≥ B+C

F p
> 1.

Note B+C > F p, or (1− p)B+ p(B−F) > −C must hold, otherwise the assumption (1−
p)ui(B)+ pui(B−F) > ui(−C) is violated. Since x is greater than 1, P(V |n/p) decreases

as n gets larger. However, if q = 0, Q(x) = 1− x, so x = 1. If x = 1, P(V |t) is always 1 for

any t.
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Now we consider heterogeneous citizens. ki is the smallest integer such that

(1− p+ pq)ui(Bi)− p(1− q)ui(kiF +F)≤ ui(−C).

Since ui(·) is weakly concave, the upper bound of such ki is
⌈

Bi+Ci
p(1−q)F

⌉
−1. Thus k̄ =maxi ki

is finite for any q ∈ [0,1). Let G(k) denote the cumulative density function of k = 0, . . . , k̄,

and g(k) = G(k)−G(k−1),k = 1, . . . , k̄ is the probability mass of the citizens with ki = k.

By the assumption of the initial incentive of public bad production, g(0)=G(0)= 0.

The transition probability matrix with the density function G, TG is a square matrix

of order k̄+1. For notational simplicity, denote l = k̄+1. TG is characterized as follows:

• (TG)1,1 = 1− pq.

• (TG)i,1 = (1−G(i−1))p(1− q) for i = 2, . . . , l.

• (TG)i,i =G(i−1)+ (1−G(i−1))(1− p) for i = 2, . . . , l.

• (TG)i,i+1 = (1−G(i−1))pq for i = 1, . . . , l−1.

• All the other entities are zero.

Note that G(l)= 1 and l is an absorbing state, so the last row of TG is a standard unit

vector whose last entity is 1. Since T t
1,l is the probability of transitioning from state 0 to

state k̄ in t trials, P(V |t) = 1−T t
1,l . The stationary probability vector π is (0,0, . . . ,1).

That is, limn→∞(T t
G)1,l = 1, or limt→∞ P(V |t) = 0. Next we want to show the mono-

tonicity: (T t+1
G )1,l ≥ (T t

G)1,l for any t. Since (T t+1
G )1,l = (T t

G)1,l−1(TG)l−1,l + (T t
G)1,l(TG)l,l =

(T t
G)1,l−1 g(k̄)pq+ (T t

G)1,l , (T t+1
G )1,l ≥ (T t

G)1,l if and only if (T t
G)1,l−1 g(k̄)pq ≥ 0.

Last, we show that the expected time to reach the absorbing state is finite. Let

TG =
[

Q R
0 1

]
,

where Q is a k̄-by-k̄ matrix, R = [0, . . . ,0, g(k̄)pq]′ is a k̄-by-1 vector, and 0 is an 1-by-k̄
zero vector. Thus, Q describes the probability of transitioning from some transient state

to another, and R describes the probability of transitioning from some transient state to

the absorbing state. Since state k̄−1 is the only state that has a positive probability of

transitioning to the absorbing state, all the other entities in R except for the last one are

zeros.

The expected number of visits to a transient state j starting from a transient state i
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before being absorbed is described by the so-called fundamental matrix, denoted by N.

N=
∞∑

k=0
Qk = (Ik̄ −Q)−1,

where (Qk)i, j is the probability of transitioning from state i to j in exactly k periods, and

Ik̄ is the k̄-by-k̄ identity matrix. Summing this for all k yields the expected number of

visits to transient states. Since the determinant of (Ik̄ −Q) is nonzero, N is well-defined.

The expected number of periods being absorbed when starting in state 0 is the first en-

try of the vector t = NJ, where J is a k̄-by-1 vector of which entities are all 1, that is,∑k̄
i=1 N1,i, which is finite.

Proof of Proposition 2:
Our goal is to characterize the first row of N in terms of G(k), p and q. Since the sum

of the first row of N yields the expected number of time periods to reach the absorbing

state, and we showed the monotonicity in Proposition 1, characterizing N is the key to

describe P(V |t). One property of the absorbing Markov chain is the probability of being

absorbed in the absorbing state is captured by

B=NR,

where Bi is the probability of being absorbed when starting from transient state i. Since

there is only one absorbing state, B’s entries are all 1. Also, since R = [0, . . . ,0, g(k̄)pq]′,
the last column of N is [ 1

(1−G(k̄−1))pq
, . . . , 1

(1−G(k̄−1))pq
]′. Another important feature of the

transition probability matrix considered in this paper is that state i−1 is the only tran-

sient state to reach state i in the next period, i = 1, . . . , k̄−1. Therefore we can recursively

calculate N1,i from N1,k̄. For example, the expected number of visits to state k̄−2, N1,k̄−1

must be equal to N1,k̄(1−G(k̄−1)) 1
(1−G(k̄−2))q

, which is 1
1−G(k̄−2)pq2 . Thus, we have

N1,i = 1

(1−G(i−1))pqk̄−(i−1)
, for i = 1, . . . , k̄.

N1,1 = 1
pqk̄ is intuitive because 1

q is the inverse of the probability of transitioning from

the other k̄− 1 transient state to another state than state 0, and 1
pq is the inverse of

the probability of leaving state 0. Therefore the expected number of time periods being

absorbed when starting in state 0 is

k̄∑
k=1

N1,k =
1

pq

k̄−1∑
i=0

1
(1−G(i))qi .
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Now we consider G̃(k), a mean-preserving spread of G(k) with a larger support. With-

out loss of generality, we can construct G̃(k) by{
( g̃(1), . . . , g̃(k̄), g̃(k̄+1)) ∈∆

∣∣∣∣∣ g̃(i)= g(i)−εi for i ≤ k̄, g̃(k̄+1)= 1
k̄+1

k̄∑
i=1

iεi

}
,

where εi ≥ 0. Then 1−G̃(i) is slightly larger than 1−G(i) for i = 1, . . . , k̄, so
∑k̄−1

i=0
1

(1−G̃(i))qi <∑k̄−1
i=0

1
(1−G(i))qi , but 1

g(k̄+1)qk̄+1 is substantially larger than
∑k̄−1

i=0

[
1

(1−G(i))qi − 1
(1−G̃(i))qi

]
due

to Jensen’s inequality.

B Appendix: Sample Instructions

[*Sample instructions for the Mq Treatment.]

This is an experiment in group decision making. Please pay attention to the instruc-

tions. You may earn a considerable amount of money which will be paid in cash at the end

of the experiment. The currency in this experiment is called ‘tokens’. In the beginning,

you are endowed with 100 tokens.

There will be a quiz after the instructions, to ensure you understand the experiment.

Overview:
The experiment consists of 60 group decision-making ‘rounds’. In each round, one of

the group members decides (while others wait) to choose either a red ball or a blue ball,

with knowing how many black stickers are in the common pool. The details follow.

How the groups are formed:
All subjects will be randomly assigned to groups of four. For example, if there are 20

subjects in this lab, there will be five groups of four subjects. You will belong to the same

group throughout the whole experiment. There will be neither physical reallocation nor

interactions. Only the server computer knows who are grouped with whom, and you in-

put your choices to your computer interface. That is, you will not know who your group

members are, and your group members will not know you either.

The balls:
In each round, one of the group members will choose either a red ball or a blue ball,

while other members will see ‘Please Wait’ screen. What happens in your turn are as

follows:

When you choose a red ball, nothing will happen further. You keep it and your group

moves on to the next round.
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When you choose a blue ball, nothing will happen with probability 0.7. With the

other probability 0.3, a black sticker will be attached to the blue ball. If you have a black

sticker, the computer will determine where black stickers go. With probability 0.5, the

black sticker is removed from your blue ball, and added to the common pool shared by

group members. With the other probability 0.5, you will keep your black sticker as well

as all the black stickers from the common pool. That is, if you choose a blue ball, the

probability that you will have black sticker(s) is 0.15 (= 0.3*0.5). Then your group moves

on to the next round.

The balls and the sticker have different values. 1 token per each red ball will be

deducted from your account, 5 tokens per each blue ball will be added to your account,

and 8 tokens per each black sticker will be deducted from your account at the end of the

session.

[Example] Suppose there are no black stickers in the common pool. If you choose a

red ball in your turn, you lose 1 token. If you choose a blue ball and it does not have a

black sticker, you earn 5 tokens. If the blue ball has a black sticker, then with probability

0.5 you earn 5 tokens and the sticker is added to the common pool. (Now 1 sticker is in

the common pool.) With the other probability 0.5, you lose 3 tokens (earn 5 tokens from

the blue ball, but lose 8 tokens from the black sticker).

Information in your turn:
When it is your turn, you will receive the following information:

• The number of black stickers in the common pool

• The numbers of red balls, blue balls, and black stickers you have kept

It will not be informed what other participants have done. If there are no black stick-

ers in the common pool, it could mean either that no one has added black stickers to the

common pool, or that someone ahead of you kept all the stickers from the common pool.

Final Earnings:
You are endowed with 100 tokens. If you have x red balls, y blue balls, and z black

stickers at the end of the session, your total payoff is 100− x+5y−8z. Your earning will

be converted into Euros at the rate of 8 eurocents per token. At the end of the main

session, there might be an additional task of which result would be paid. The server

computer will calculate the final payment. Please don’t worry about this conversion.

Summary of the process:

1. The experiment will consist of 60 rounds. Everyone is endowed with 100 tokens.
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2. In the beginning, all subjects will be randomly assigned to groups of four members.

One of the group members will make a decision in each round.

3. When it is your turn, you will choose either a red ball or a blue ball, with knowing

how many black stickers are in the common pool.

4. If you choose a red ball, your turn ends. If you choose a blue ball, with probability

0.3 a black sticker is followed. When a black sticker is followed by the blue ball,

the black sticker will be detached from your blue ball and added to the common

pool with probability 0.5. With the other probability 0.5, you will keep all the black

stickers including those in the common pool.

5. A red ball is worth −1 token. A blue ball is worth +5 tokens. A black sticker is

worth −8 tokens.

Quiz

Q1. Suppose 1 black sticker is in the common pool in your turn. You choose a red ball.

Which of the followings is correct? (a) With some probability, it will come with a

black sticker. (b) I keep the red ball. It will add 1 token to my account. (c) I keep

the red ball. It will deduct 1 token from my account. (d) I keep the red ball and the

black sticker in the common pool.

Q2. Suppose 2 black stickers are in the common pool in your turn. You choose a blue

ball, and it does not come with a black sticker. Which of the followings is correct?

(a) I keep the blue ball and one black sticker from the common pool. (b) I can decide

how many black stickers I can add to the common pool. (c) I keep the blue ball. It

will add 5 tokens to my account. (d) I keep the blue ball. It will deduct 8 tokens

from my account.

Q3. Suppose 2 black stickers are in the common pool in your turn. You choose a blue

ball, and it comes with a black sticker. Which of the followings is NOT correct? (a)

With probability 0.5, I can change my choice. (b) With probability 0.5, I keep the

blue ball, and the black sticker goes to the common pool. (c) With probability 0.5,

I keep the blue ball and all the black stickers. (d) If the black sticker goes to the

common pool, there are 3 stickers in the common pool.

Q4. If you choose a blue ball, what’s the probability of keeping black sticker(s) in your

account?
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Q5. Suppose that you keep 10 blue balls and 2 black stickers at the end of the session.

During the session, how many tokens have you gained/lost in total? (Don’t count

the endowment.)
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