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Abstract

Policy decisions often involve a repeated proofreading process before implementa-

tion. We present a dynamic model of proofreading decisions by a heterogeneous com-

mittee, in which the committee decides when to stop proofreading and implement

a risky policy. The proofreading process is costly but necessary because the risky

policy contains an unknown number of errors, and the value of the policy decreases

by the number of undetected errors. Proofreading continues as long as a qualified

majority votes for continuation. Once the proofreading process ends and the policy

is implemented, members receive heterogeneous penalties based on the remaining

errors. We characterize the optimal voting rule given the costs and penalties for the

committee. We find that any qualified voting rule for proofreading results in an in-

efficient outcome. Unlike the result in Strulovici (2010), majority rule could have a

bias not only toward under-experimentation but also toward over-experimentation.

JEL Classification: D71; D72; D83

Keywords: Collective decision; Optimal proofreading; Optimal voting rule; Qualified

majority rule; Representative agent.

1 Introduction

This paper concerns an assessment process before implementing a new policy or a

project. Before implementing a new policy, agencies frequently run a final evaluation
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process to verify its effectiveness. This process can be modeled as a proofreading process

(e.g., Yang et al., 1982; Ferguson and Hardwick, 1989), where a primary goal of the

process is to find and fix as many errors as possible to make sure that the policy is

successful. For example, suppose that an environmental protection agency is concerned

about a new manufacturing process that may be harmful to the environment. The agency

may conduct a series of investigations to detect violations of environmental laws such

as overuse of toxic chemicals and pollutants in the process. The agency approves the

manufacturing process only if the agency expects that the costs of further investigations

outweigh the benefits of detecting potentially unobserved violations.

More complicated yet, the proofreading decisions are often made by a committee.

When a decision committee consists of heterogeneous members, some members may

want to conduct a stringent proofreading process, although it would incur a high cost

of an investigation. On the contrary, others may be less involved with the investigation

and may want fast approval of a new policy to enjoy potential benefits from policy im-

plementation. To resolve this conflict of interest, the committee members might impose

a collective decision rule, which is supposed to be designed to maximize social welfare.

To understand the incentive structure of such a collective proofreading process and find

an optimal voting rule, we build a model of collective proofreading decisions by hetero-

geneous members.

In our model, there is a committee consisting of n members, and it sequentially de-

cides whether to continue a costly proofreading process or to stop it and implement the

policy. The policy is risky in that it may contain errors, and its value decreases by the

number of undetected errors. The committee continues rectifying the errors through the

proofreading process as long as a qualified majority of members agrees to do so.1

We first consider a situation in which the errors are realized from a Poisson distribu-

tion so that the proofreading level preferred by each member can be constant regardless

1It would be more realistic to consider two-stage voting procedures: one vote for the proofreading strin-
gency, and the other one for approval of a (potentially) risky policy over a status quo policy. We mainly
focus on the inefficiency involved in the proofreading stage, but we admit that additional voting stage with
a status quo policy can be another cause of potential inefficiency.
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of the number of previously detected errors. To derive a clear policy implication, we

assume further that there is at least one member whose optimal proofreading level as

a single decision maker coincides with the socially optimal level. Hence, it is optimal

for the committee to delegate the decision to this representative member. However, the

representative member’s optimal number of proofreading steps can be different from the

number of proofreading steps approved by the qualified number of committee members.

Due to this discrepancy, any qualified majority rule may result in a socially sub-optimal

outcome.

The optimal voting rule that maximizes social welfare varies by the nature of the

heterogeneity of each committee member. By letting e be the number of members who

prefer to stop the proofreading process no earlier than the representative member, we

find that the e-qualified majority rule is welfare-maximizing. If such e is less than half

of the full committee, then it means the proofreading procedure should continue even

when a minority of members want to continue under the optimal voting rule. In other

words, the simple majority rule may have a bias toward under-experimentation, which

follows the main finding of Strulovici (2010). However, we find a condition under which

the simple majority rule results in an over-experimentation outcome, so the proofreading

experimentation has to be carried out more conservatively. Consequently, a superma-

jority rule is required to achieve optimality. Therefore, we conclude that the simple

majority rule could be socially optimal in the proofreading experimentation setting, but

such optimality conditions are too restrictive to hold in reality.

We extend our model to address a situation in which there is a fixed number of issues

that need to be evaluated. In particular, we assume that the errors are drawn from a

Binomial distribution. In this case, the probability of detecting additional errors depends

on the number of previously detected errors, so the optimal stopping decisions are no

longer stationary. We can still characterize each committee member’s optimal stopping

rule as a function of the detected errors with respect to the proofreading levels. The same

results as the Poisson model are retained.
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1.1 Related Literature

Our model builds on seminal work on the single decision maker’s optimal proofread-

ing problem by Yang et al. (1982). Previous studies on optimal proofreading decisions

(Chow and Schechner, 1985; Ferguson and Hardwick, 1989; Dalal and Mallows, 1988)

have focused on a single decision maker’s problem in which there are no concerns about

a conflict of interest between heterogeneous committee members. In this paper, which

benefits from a simple dynamic nature under the assumption of Poisson prior distri-

bution of errors, we extend to a collective proofreading model without other behavioral

and strategic concerns in collective decisions such as present-bias (Jackson and Yariv,

2015) or free-riding problems (Keller and Rady, 2010). As a result, we obtain a precise

characterization of the welfare-maximizing voting rule.

This paper is also related to the recent literature on collective decisions in dynamic

settings (e.g., Strulovici, 2010; Chan et al., 2018; Jackson and Yariv, 2015; Keller and

Rady, 2010; Lizzeri and Yariv, 2017; Das et al., 2020). In a modeling perspective, we

consider agents who do not discount the future. This assumption is necessary for the

existence of a representative agent in a dynamic model, as shown by Jackson and Yariv

(2015). In our model, having a representative agent is not crucial, but it renders a more

precise illustration of the welfare loss of a qualified majority rule compared with the so-

cially optimal voting rule. In a setting of collective deliberation, Lizzeri and Yariv (2017)

compare the performance of different voting rules in terms of committee welfare under

the presence of a self-control problem, while we find an optimal voting rule without a

self-control problem. Das et al. (2020) examine a situation where two players choose

effort levels with two-armed exponential bandits and show that all Markov perfect equi-

libria imply the same amount of experimentation. Unlike theirs, the model considered

in our paper takes the heterogeneous cost parameters as given so that the effort choice

is binary.

Strulovici (2010) considers situations where individuals learn their type more accu-

rately by experimentation, but our model deals with experimentation decisions under
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complete information about the committee’s heterogeneity. While the main finding of

Strulovici (2010) is that majority rule has a downward bias in terms of experimentation,

we found that majority rule could also yield a bias toward over-experimentation in our

context. This observation is distinct from recent studies that attempt to link collective

decisions to present-biased outcomes.

In the sense that the committees decide to stop searching for potential errors by

proofreading, this paper is also related to studies on collective search by committees.

In the context of accepting a proposal or searching for alternatives, Compte and Jehiel

(2010) examine how each committee member affects the set of possible agreements. We

could conduct the same exercise in our context, but our focus is more on the description of

the socially optimal voting rule. Albrecht et al. (2010) compare how the collective search

problem differs from a single-agent search problem with a focus on the case of symmetric

agents, whereas our paper explicitly considers heterogeneous agents.

In Moldovanu and Shi (2013), a committee decides whether to accept the current

alternative with multiple attributes or to continue the costly search, and each commit-

tee member can privately assess the quality of only one attribute. Our model can be

considered as a costly search of alternatives (with one attribute) whose quality is non-

decreasing over time. Although information aggregation and adverse selection problems

under private information of committee members as in Lauermann and Wolinsky (2016)

are worth being investigated, we focus on the case of complete information.

Our paper contributes to advancement of theoretical models on environmental policy

choice in different economic settings. Viscusi and Zeckhauser (1976) provide a tractable

framework to deal with a situation in which there is no clear ranking among environ-

mental policies due to the presence of uncertainty. In particular, their model conve-

niently examines how a chance of irreversibility affects policy choice, as discussed in

Viscusi (1985). Wirl (2006) examines how irreversibilities of environmental policy affect

the optimal intertemporal accumulation of greenhouse gases in the atmosphere under

uncertainty. Gsottbauer and van den Bergh (2011) investigate the relationship between
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environmental policy decisions and other-regarding preferences.

In our paper, we consider a different nature of the policy implementation: the uncer-

tainty of the benefit (damage) of the policy and conflicts of interest between heteroge-

neous committee members resolved by voting. Although applications in environmental

policy decisions motivate this paper, the model is applicable in many other cases such

as optimal R&D investments (Moscarini and Smith, 2001; Weeds, 2002) decided by a

committee.

2 Benchmark Model

In this section, we describe a single decision maker’s choice problem. We introduce

key assumptions simplifying the problem. Specifically, we assume that the number of er-

rors is drawn from a Poisson distribution. Then, we investigate an optimal proofreading

strategy, which is a building block for analyzing equilibrium behavior in the committee

decision.

2.1 Setup

There is a risky project containing M errors, where M is a random variable dis-

tributed over N0 with E[M] < ∞.2 There is a single decision-maker who tries to find

and correct errors through a proofreading process. In each period t, the decision maker

decides whether to stop or continue the proofreading process. If he decides to stop the

process, he pays a penalty of D > 0 for each remaining error. Each error-finding step

incurs a cost c > 0. To ignore the time preference of the decision maker, we assume that

he does not discount the future, or that the time gap between each proofreading step is

minuscule.

We let Xt be the random variable representing the number of detected errors in pe-

riod t. We denote by X t the realized number of detected errors in period t, X t ≥ 0, and

2Throughout the paper, N0 represents the set of natural numbers including zero.

6



∑t
j=1 X j ≤ M for all t ≥ 1. We assume the following for the number of errors M and the

sequence of detected errors (X t)t≥1:3

Assumption 1. For M and (X t)t≥1,

(1) the number of errors follows a Poisson distribution with λ> 0:

M∼ Poisson(λ).

(2) the number of detected errors in period t+1 follows a Binomial distribution:

Xt+1|M, X1, . . . , X t ∼ Binomial

(
M−

t∑
j=1

X j, p

)
,

where p ∈ (0,1) is the probability of detecting an error.

As shown in Lemma 3.1 in Ferguson and Hardwick (1989), Assumption 1 dramati-

cally simplifies the dynamic nature of the problem as the conditional probability of hav-

ing errors in period t+1 is independent of the history of previous error findings,4 which

is recapitulated by the following lemma.

Lemma 1. The number of remaining errors after t steps of proofreading follows a Poisson

distribution with λ(1− p)t:

M−
t∑

j=1
X j ∼ Poisson(λ(1− p)t).

Lemma 1 implies (1) that the mathematical expectation of the number of remaining

errors is λ(1− p)t, which is decreasing in t, and (2) that the expectation is independent

of a history of error detection.

3We consistently use boldface mathtype letters (e.g., M and Xt+1) to indicate random variables and
normal mathtype letters (e.g., X j) as a realization of a relevant random variable. Thus an expression, for
example, M−∑t

j=1 X j is a short form of M−∑
X j|X1 = X1,X2 = X2, . . . ,Xt = X t.

4When the number of detected errors follows a Binomial distribution, the conditional probability does
depend on the previous errors found. More details can be found in Appendix B.
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To make the decision maker’s problem non-trivial, we assume that (at least one)

proofreading is ex-ante desirable. Since the expected penalty from approval of the risky

project without proofreading is calculated as Dλ, we assume that proofreading once is

better than doing nothing:

Assumption 2. Proofreading is desirable:

Dλ> Dλ(1− p)+ c ⇔ pλ> c
D

.

2.2 Optimal Strategy

We analyze the single decision maker’s optimal proofreading strategy. At time t, she

observes the number of detected errors by t−1, and decides whether to continue or stop

the proofreading process.

After t steps of the proofreading process, the expected penalty from implementing the

policy is:

DE[remaining errors|history]= DE

[
M−

t∑
j=1

X j

]
= Dλ(1− p)t,

where the second equality comes from Lemma 1. The total expected cost, the sum of the

expected penalty and proofreading costs of t steps, is calculated as

C(t)= Dλ(1− p)t + tc.

The decision maker’s key incentives are illustrated in Figure 1. The blue triangles de-

note the expected penalty of approving the risky project in period t after t error-finding

trials. The expected penalty is strictly decreasing in t because the decision maker be-

comes more confident with the risky policy as a longer proofreading process is conducted.

The black dots represent the total expected cost of approving the risky project after

t steps of proofreading. It initially decreases in t by Assumption 2 because proofreading

decreases the number of remaining errors and the probability of having errors, and this

8



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Period (t)

Pe
na

lt
y

an
d

C
os

t Total cost of the project
Penalty of the project

Figure 1: A numerical example of the costs: D = 1, λ= 5, p = 1
2 , and c = 0.1.

decrease dominates the constant marginal cost of additional proofreading. However,

after a certain period (t = 5 in the figure), the total expected cost increases because the

marginal benefit of having fewer errors is dominated by the marginal cost of additional

proofreading. We denote t∗ as the period minimizing the total expected cost by ignoring

the integer value requirement of it.

Although it is obvious in the single decision-making problem, it will be useful in the

context of the collective decisions to note that the decision maker has an incentive to

continue the proofreading process during the periods in interval [0, t∗] rather than stop

and approve the risky project immediately because

Dλ(1− p)t ≥ Dλ(1− p)t∗ + (t∗− t)c.

The optimal stopping time is determined by the cost-penalty ratio, c
D . To see this

point, note that the marginal decrease of the expected number of errors must be the

same as the cost-penalty ratio at the optimal step t∗ if it were to be on R+:

λ(1− p)t∗ ln
(

1
1− p

)
= c

D
.
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Note that the interior solution of the above equation exists by Assumption 2. As the cost-

penalty ratio decreases, the optimal stopping time t∗ increases. Thus, the cost-penalty

ratio is a key characteristic that represents the decision maker’s preference over stopping

times.

3 Collective Proofreading

Our main contribution is to extend the previous single decision maker’s problem to a

collective deliberation problem. We first present a collective proofreading environment.

Then, we introduce strategies and equilibrium notion under the environment.

Collective proofreading environment. Time is discretized as t = 1,2,3, . . . . There is

a decision committee consisting of n ≥ 3 members, where n is assumed to be odd. Each

member is indexed by i ∈ N = {1, . . . ,n}. At the outset of the proofreading process, the

number of errors is drawn by nature from a Poisson distribution with parameter λ > 0.

In the collective proofreading process, each error is detected with probability p if the

committee proofreads the error.

As a collection of collective decision rules, we consider a qualified majority rule.

Specifically, under a q-rule, the committee continues the proofreading process if at least

q members of the committee want to do so.5 We assume that members’ previous voting

history is publicly observable across the members. We refer to a n+1
2 -rule as a simple

majority rule.

The collective proofreading process begins with a common prior belief about the num-

ber of errors, given by the parameter λ with detection probability p. Thereafter, the com-

mittee members learn about the number of remaining errors in a Bayesian fashion by

observing one another’s voting actions and the detected errors. Since the voting history is

publicly observable, the members share common posterior beliefs throughout the proof-

5We note here that we have not yet defined the set of strategies available to each member. We will soon
explain strategy profiles and the induced proofreading process by imposing Markov perfection.
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reading process. Figure 2 illustrates the intermediate collective proofreading process in

period t.

period t begins

Proofread; X t is realized

vote under q-rule

game ends

# continue < q

next period

# continue ≥ q

Figure 2: Illustration of the timing of the game in a period

Committee members are heterogeneous in their penalty per remaining error and the

proofreading cost. This heterogeneity may be due to the members’ different positions

in the agency or political interests. For instance, politicians and policymakers may have

small proofreading costs because they are less involved with the actual proofreading pro-

cess compared to engineers and researchers who actually spend their time and effort to

investigate the policy. The penalty per remaining error would also be heterogeneous:

The investigator of the environmental policy would be less affected by the resulting mis-

conduct of the new manufacturing process, while the (representative of) residents of the

affected area may suffer critically from the resulting errors.

We denote by {(D i, ci)}n
i=1 the heterogeneous committee members. Without loss of

generality, we assume that D j+1 ≥ D j > 0 for j = 1, . . . ,n−1. We let ~t∗ = (t∗i )n
i=1 be the

vector of each member’s optimal stopping time if they were to behave as a single decision

maker in the same proofreading environment, and we denote by m(~t∗) the median of the

optimal stopping times. We assume a nontrivial amount of heterogeneity: t∗i 6= t∗j for

some i 6= j.

Ci(t) represents member i’s total cost from t steps of proofreading, D iλ(1− p)t + tci.
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The aggregate cost Cagg(t) is defined as the sum of members’ costs, and t∗agg be the op-

timal stopping based on Cagg(t). Then, a member r ∈ N is said to be a representative

member if t∗r coincides with t∗agg. We assume that there is at least one member whose

cost function is aligned with the aggregate cost of the decision committee, which is con-

sidered to be the social cost function.6

Assumption 3. There exists a representative member.

Assumption 3 means that the aggregated cost is minimized if the committee delegates

the decision to member r,7 or construct a voting rule that makes the representative

member pivotal. We call member r the representative member. All the intuitions and

results do not rely on the index (identity) of the representative member.

It is worth noting that Assumption 3 is unnecessary to derive our main results. Even

without this assumption, there must be someone whose preferred proofreading steps are

closest to the socially optimal steps, and we can examine the inefficiency of collective

proofreading with this near-representative member. Rather, Assumption 3 merely cre-

ates a situation where a definitive way to implement the social optimum exists.

Strategies and equilibrium. We assume that committee members use pure Markov

strategies in discrete time with the posterior belief about the number of remaining errors

as the state variable. Note that the number of remaining errors is invariant of detection

history by Lemma 1. Thus, a pure Markov strategy is a sequence of voting behavior

whether to vote to stop or continue in each period. We restrict our attention to the set

of Markov strategies in which each member i chooses a finite threshold time ti ≥ 2 such

that she votes to continue if and only if t < ti.8 We call those strategies monotone Markov

strategies.

6Here, we adopt a utilitarian criterion.
7To guarantee the existence of such a representative member, the assumption of no future discounting

is crucial. Specifically, as shown in Jackson and Yariv (2020), it is impossible to have such a representative
member if members are heterogeneous in their discount factors.

8The requirement of ti ≥ 2 is induced by Assumption 2. We also rule out the possibility of the infinite
threshold; since a strategy profile consisting of the infinite threshold results in infinity cost of proofreading
for everyone, the committee can easily reach a consensus that no member uses the infinite threshold.
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It turns out that sincere voting is a weakly dominant strategy among the set of mono-

tone Markov strategies. To see why, observe that voting for continuation until member

i’s optimal stopping time t∗i is at least as profitable as voting against continuation before

t∗i . Voting for continuation after t∗i does not help attain the smallest expected cost either.

Therefore, behaving truthfully as if a committee member were a single-decision maker

is weakly dominant when voters use monotone strategies. As such, we analyze a Markov

perfect equilibrium in which everyone behaves sincerely according to their stand-alone

optimal stopping time. The following proposition formalizes what we have discussed so

far:

Proposition 1. There is a Markov perfect equilibrium consisting of weakly dominant

strategies in which each member sincerely votes for continuation.

Throughout the paper, we call this Markov perfect equilibrium the equilibrium unless

otherwise stated. In the following section, we find an optimal voting rule assuming that

voters act on the equilibrium.

4 Optimal Voting Rule

We now analyze the equilibrium outcomes under different q-rules. We identify the

condition under which the q-rule is socially optimal.

Proposition 2. In equilibrium, the q-rule produces the socially-optimal outcome if and

only if q satisfies q = #{i|t∗i ≥ t∗r }.

Proposition 2 states that the socially-optimal voting rule should make the representa-

tive member pivotal. In other words, in any situations where the representative member

is not pivotal, collective decisions yield socially inefficient outcomes.

The key intuition for the inefficiency is captured by the fact that member i’s optimal

stopping time crucially depends on ci
D i

, neither D i nor ci per se. Even if we impose
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a monotone rank of ci, along with D i+1 ≥ D i for i = 1, . . . ,n− 1, the rank of ci
D i

is not

sufficient to determine the optimal voting rule.

The following two examples illustrate situations in which the committee continues

the proofreading steps too long and not long enough under a simple majority rule.

Member D i ci t∗i Ci(2) Ci(3) Ci(4) Ci(5) Ci(6) Ci(7)

1 1.0 0.60 3 2.45 2.43 2.71 3.16 3.68 4.24
2 1.1 0.30 4 1.98 1.59 1.54 1.67 1.89 2.14
3 1.2 0.15 5 1.80 1.20 0.98 0.94 0.99 1.10
4 1.7 0.10 6 2.33 1.36 0.93 0.77 0.73 0.77
5 2.0 0.05 7 2.60 1.40 0.83 0.56 0.46 0.43∑

11.15 7.98 6.99 7.09 7.75 8.67

Table 1: Inefficiency: Over-proofreading. λ= 5, p = 0.5

The example in Table 1 considers a situation where the costs are negatively aligned

with the penalties (that is, ci ≥ ci+1). This cost-penalty relationship could be observed

in a committee in which senior members or authoritative members take responsibility

for remaining errors while junior members exert effort to proofread. In this example,

the order of ci
D i

is monotone, as is the optimal stopping time for each member. Although

the preferences of each member’s optimal stopping time are well ordered, and member 3

is seemingly a median member in every aspect, the simple majority rule involves over-

proofreading.

Member D i ci t∗i Ci(2) Ci(3) Ci(4) Ci(5) Ci(6) Ci(7)

1 1.0 0.05 6 1.35 0.78 0.51 0.41 0.38 0.39
2 1.1 0.10 5 1.58 0.99 0.74 0.67 0.69 0.74
3 1.2 0.20 4 1.90 1.35 1.18 1.19 1.29 1.45
4 1.7 0.30 4 2.73 1.96 1.73 1.77 1.93 2.17
5 2.0 0.40 4 3.30 2.45 2.23 2.31 2.56 2.88∑

10.85 7.53 6.39 6.34 6.85 7.62

Table 2: Inefficiency: Under-proofreading. λ= 5, p = 0.5

The example in Table 2 considers a situation where the costs are positively aligned

with the penalties (that is, ci ≤ ci+1). This cost-penalty relationship can be observed in a
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committee in which some members are more involved in the policy than other members.

In this example, the simple majority rule involves under-proofreading.

Two observations are worth mentioning. First, the positive (resp. negative) rela-

tionship between D i and ci does not necessarily imply under-proofreading (resp. over-

proofreading). The opposite cases are also possible. Second, the optimal voting rule may

require a smaller number of votes than the simple majority to continue the proofreading

process.

One remaining question would be under what conditions the simple majority rule is

socially optimal.

Proposition 3. A super-(sub-)majority rule is socially optimal if and only if

cm

Dm
< (>)

∑n
i=1 ci∑n
i=1 D i

,

where the subscript m denotes the committee member whose c
D is the median.

Proposition 3 also implies that the simple majority rule is socially optimal if and only

if cm
Dm

=
∑

ci∑
D i

.9 For example, if the cost parameters and damage parameters are symmet-

rically distributed, then cm and Dm coincide with the average of ci and D i, respectively,

and the simple majority rule is socially optimal. Proposition 3 indirectly illustrates how

fragile the foundation of the simple majority rule is in the context of collective proofread-

ing decisions. It is well known that asymmetric intensities among voters may make the

simple majority rule socially undesirable.10 It is even harder to achieve efficiency in the

context of collective proofreading because we need symmetry in both dimensions.

Similar to the fact that a simple majority rule cannot be optimal for most cases,

any q-rule cannot be a panacea for all cases. A naturally followed question is whether

the committee could endogenously choose the optimal voting rule. In the ex-ante stage,

9More rigorously speaking, cm
Dm

=
∑

ci∑
D i

is a sufficient condition for the simple majority to be socially
optimal, but it is not a necessary condition. Since q in the q-rule is a positive integer, the simple majority
rule can still be socially optimal if

∣∣∣ cm
Dm

−
∑

ci∑
D i

∣∣∣ is sufficiently small.
10For reviews of this line of research, see Posner and Weyl (2017).
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where every member knows the joint distribution of the damages and costs but does not

know their realized values, the committee unequivocally prefers the optimal voting rule,

as it renders the highest expected payoff. Therefore, for any voting rules and protocols for

mapping individuals’ preference orders to the committee’s preference order, the optimal

voting rule will be selected. However, in the interim stage, where committee members

privately learn their own values (D i and ci), their preferred stopping times, and hence

their preferred voting rules, vary. In this case, the primitive voting rule to determine the

voting rule (Barbera and Jackson, 2004) may make a deviation from the optimal voting

rule. Thus, a normative suggestion we can draw from this section is that the voting rule

should either be made at the ex-ante stage or be exogenously determined by an unbiased

executor.

5 Concluding Remarks

Many serious policies and projects are implemented after rigorous proofreading steps.

When a committee with heterogeneous members collectively makes decisions about the

proofreading process, the simple majority rule is likely to result in an inferior outcome.

The socially optimal voting rule, which requires the committee to continue the proofread-

ing process up to the socially optimal proofreading level, can be constructed only after

accounting for the members’ heterogeneity. This construction is a nontrivial task: Al-

though we are completely informed about each committee member’s heterogeneity, there

is no clear rule about which voting rule should be maintained. A simple majority rule

could have a bias not only toward under-proofreading but also toward over-proofreading.

The optimal voting rule should either be made at the ex-ante stage or be exogenously

determined by an unbiased executor each time.

Two possible extensions are worth mentioning. First, one may consider a model in

which some members prefer taking the safe (status quo) policy rather than choosing the

risky policy after they agree to stop proofreading. That is, a committee follows two-stage
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voting procedures: one vote for the proofreading stringency, and the other for approval of

a risky policy over the status quo. In this case, the representative member or the decisive

voter in the proofreading-decision stage may have to form a coalition with other members

to implement the socially-optimal policy. For this analysis, one needs to model a dynamic

bargaining process in line with the current proofreading process. Second, different types

of errors in terms of the difficulty to detect could be considered. When obvious errors

are easy to detect while subtle ones are difficult to catch, not only the probability of

finding an error will decrease over time, but the expected penalties associated with the

remaining errors would change accordingly.

Although the theory has many interesting predictions, still many empirical questions

remain unanswered: Do subjects optimally vote to stop proofreading when the expected

benefit exceeds the cost they can afford? Do they rationally respond to changes in the

distribution of the errors of the risky project and the degree of committee heterogeneity?

How much is the actual welfare loss when adhering the simple majority voting rules that

are not maximizing welfare?11 We may answer all the questions by conducting controlled

laboratory experiments.

11In a similar line of questioning, Martinelli et al. (2020) provide experimental evidence that a simple
majority rule, which is supposed to be sub-optimal, performs better than the (theoretically) optimal voting
rule.
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A Proofs

Proof of Lemma 1

Proof. Elementary computations show that M∼ Poisson(λ) and X1|M∼ Binomial(M, p)

imply that (1) X1 ∼ Poisson(λp), and (2) X1 and M−X1 are independent. Thus, we

have that M− X1 ∼ Poisson(λ(1− p)). Then, by the induction principle, it follows that

M−∑t
j=1 X j ∼ Poisson(λ(1− p)t) as stated in the lemma.

Proof of Proposition 1

Proof. We first show that the strategy of voting for continuation if and only if t ≤ t∗i

returns a payoff at least as high as any other strategies. Let t−i be a fixed strategy profile

of the members except member i. There are two cases to consider: (1) the proofreading

never stops regardless of member i’s decision, and (2) the proofreading may stop at some

period t depending on member i’s decision in period t. Thus, it suffices to consider the

second case. Note that the members are assumed to use monotone strategies. Let t1 be

the first time in which member i’s decision matters. If t∗i ≤ t1, then the desired strategy

returns the highest payoff as it terminates the proofreading process at time t1. If t1 < t∗i ,

then it is better for member i to continue the process until t∗i . Hence, the desired strategy

never returns a strictly smaller payoff than any other strategies.

We now show that there exists at least one strategy profile of other players such that

the desired strategy returns a strictly higher payoff with respect to the given strategy

profile. Let t−i be the strategy of the members except member i in which there are q−1

number of members who vote to stop whenever t ≥ t∗i , and there are n− q number of

members who always vote for continuation. Then, it follows that member i’s decision is

pivotal and playing the desired voting strategy returns a strictly higher payoff than any

other strategies.

Proof of Proposition 2

22



Proof. The "only if" part is trivial: If q does not satisfy q = #{i|t∗i ≥ t∗r }, then such q-

rule does not produce the socially-optimal outcome. If the q-rule produces the socially

optimal outcome. Let q = #{i|t∗i ≥ t∗r }. To show that the q-rule produces the socially-

optimal outcome in the equilibrium, it suffices to show that the proofreading process

stops at time t∗r . By Proposition 1, voter i votes for continuation whenever t ≤ t∗i . For any

t ≤ t∗r , there exist at least q members who vote for continuation. Thus, the proofreading

stops at exactly period t∗r , and so the proposition is proven.

Proof of Proposition 3

Proof. Since
∑n

i=1 Ci(t) = (
∑n

i=1 D i)λ(1− p)t + t(
∑n

i=1 ci), t∗r , the minimizing argument of∑
Ci(t), satisfies the following:

λ(1− p)t∗r ln
(

1
1− p

)
=

∑n
i=1 ci∑n
i=1 D i

.

It is straightforward to check if cm
Dm

=
∑n

i=1 ci∑n
i=1 D i

, then t∗m coincides with t∗r because

λ(1− p)t∗r ln
(

1
1− p

)
=

∑n
i=1 ci∑n
i=1 D i

= cm

Dm
=λ(1− p)t∗m ln

(
1

1− p

)
.

If cm
Dm

<
∑n

i=1 ci∑n
i=1 D i

, then t∗m > t∗r . That is, the median voter prefers to proofread more than

the socially optimal proofreading level, and a simple majority has a bias toward over-

experimentation. The case with cm
Dm

>
∑n

i=1 ci∑n
i=1 D i

is analogous.

B Binomial Model

In Sections 2 and 3, thanks to the memoryless property of Poisson distributions, each

member’s preferred proofreading level was constant regardless of the number of previ-

ously detected errors. Since the support of the Poisson distribution is unbounded, the

model we considered in the previous sections may be different from more realistic situ-
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ations where a committee collectively proofreads finite issues. In this case, the number

of previously detected (and fixed) errors do affect further proofreading decisions. In this

section, we assume that the number of errors is drawn from a Binomial distribution.12

There is a single risky project containing M ∼ Binomial(N,π) errors, where N is

the number of issues that affect the overall return of the project, and π > 0 is the error

probability for each issue that contains either one error or none.

Let Yt = E[Mt|X1, . . . , X t]D+ct denote the total expected cost after t steps of proofread-

ing, where X j is the number of errors detected in period 1 ≤ j ≤ t, and Mt = M−∑t
j=1 X j

is the number of remaining errors.

We assume independence of the error-detecting probability:

Assumption 4. In each proofreading step, each error is detected with probability p > 0,

and the detection probability is independent of the detection history and detection of other

errors:

Xt+1|M, X1, . . . , X t ∼Binomial(Mt, p).

Then, by Lemma 4.1 in Ferguson and Hardwick (1989), we obtain the following:

Lemma 2. The number of remaining errors Mt follows a binomial distribution:

Mt|X1, . . . , X t ∼ Binomial(N −
t∑

j=1
X j,πt),

where the updated error probability πt is calculated as

πt = π(1− p)t

(1−π)+π(1− p)t .

There are several notable properties driven from Lemma 2. First, the updated error

probability is independent of the previously detected errors. Second, the error probability
12A model with this assumption nests a situation where a committee collectively decides to draw an

additional signal to learn the binary state of the world, as it could be understood as an error (bad state)
drawn from a Bernoulli distribution.
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πt is monotone decreasing in t.13 Third, the expected number of remaining errors after t

proofreading steps is history dependent:

E[Mt+1 |X1, . . . , X t]= E[Mt −Xt+1 |X1, . . . , X t]

= E[Mt |X1, . . . , X t]−E[Xt+1 |X1, . . . , X t]

=
(
N −

t∑
j=1

X j

)
πt −E[E[Xt+1 |M, X1, . . . , X t]|X1, . . . , X t]

=
(
N −

t∑
j=1

X j

)
πt −E[Mt p |X1, . . . , X t]

= (1− p)

(
N −

t∑
j=1

X j

)
πt,

which depends on both (1) the updated error probability πt and (2) the sum of detected

errors up to period t. If other things are equal, the expected number of remaining errors

is decreasing in both period t and the number of detected errors in previous periods.

Consequently, the expected cost of stopping in period t+1 is

E[Yt+1 |X1, . . . , X t]= E[Mt+1 |X1, . . . , X t]D+ (t+1)c

= (1− p)

(
N −

t∑
j=1

X j

)
πtD+ (t+1)c.

The expected cost is now history dependent, as is the optimal strategy.

One assured condition is that the optimal strategy is still monotone. In fact, it is

well-known in the optimal stopping literature that an optimal stopping strategy has a

myopic form if a stopping problem is monotone.14 The monotonicity requires that the

sets

At = {Yt < E[Yt+1 |X1, . . . , X t]}
13This probability directly follows from the fact that

πt = π(1− p)t

(1−π)+π(1− p)t =
π

1−π
(1−p)t +π

.

14It is also called the one-stage look-ahead rule. See, for example, Bruss (2000).
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are monotone increasing as At ⊆ At+1 almost surely for any t. In other words, the condi-

tion At ⊆ At+1 means that if an immediate stop at time t is optimal in period t, then it is

also optimal to stop at all the following future periods, no matter how the future errors

are detected.15

In the current setting, the condition for monotonicity is satisfied. To see why, observe

that

Yt < E[Yt+1 |X1, . . . , X t] ⇐⇒ E[Mt+1 |X1, . . . , X t]pD < c

⇐⇒ (1− p)

(
N −

t∑
j=1

X j

)
πt pD < c

⇐⇒ (1− p)

(
N −

t∑
j=1

X j

)
π

1−π
(1−p)t +π

pD < c.

The second factor on the left-hand side of the last inequality, N −∑t
j=1 X j, is the

difference between the total number of issues and the number of detected errors. This

factor is non-increasing. The third factor, π
1−π

(1−p)t
+π , is the updated belief of having an error

in each remaining issue. This factor is strictly decreasing and independent of the history

of detected errors. Therefore, the whole expression on the left-hand side is decreasing.

The optimal stopping time t∗ is the smallest integer t such that

(
N −

t∑
j=1

X j

)
(1− p)πp

1−π
(1−p)t +π

≤ c
D

,

and the cost-penalty ratio, c/D is still a key characteristic. From this, we can characterize

the optimal stopping threshold as a pair of the number of detected errors and the decision

period. After rearranging the inequality, we have

t∑
j=1

X j ≥ κ0 − κ1

(1− p)t+1 ,

where κ0 = N − c
D p(1−p) and κ1 = c(1−π)

Dπp . This stopping rule implies that proofreading

15Equivalently, when a member prefers stopping in period t to stopping in period t+1, then she also
prefers stopping in period t+1 to stopping in period t+2.
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should be stopped either when the number of detected errors is sufficiently large given

the proofreading steps, or when proofreading has proceeded for a sufficiently long time

given the number of detected errors.

period t

#Detected errors

STOP

STOP

continue

stop

Figure 3: Illustration of the optimal stopping rule

For a clearer illustration, we provide a numerical example that shows how a deci-

sion maker’s optimal strategy depends on the detection history and proofreading periods

when (N, c,D,π, p) = (10,1,8,0.5,0.5). Specifically, in Figure 3, the y-axis represents the

number of detected errors up to period t (i.e.,
∑t

j=1 X j), and the x-axis represents the de-

cision period t. With the set of parameters specified above, we have the following optimal

stopping rule:
t∑

j=1
X j ≥ 9.5−2t−1.

The blue dots in Figure 3 represent the region in which the decision maker stops

proofreading. Observe that the monotonicity is satisfied, that is, if a coordinate (x, y)

is contained in the blue region, so is (w, y) whenever w ≥ x. Since the time proceeds to

the right on the horizontal axis, and the number of detected errors weakly increasing

on the vertical axis, this monotonicity implies that a decision maker never changes his

decision. Intuitively, in the figure, this monotonicity implies that Yt < E[Yt+1 |X1, . . . , X t]
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is satisfied for all the points colored blue in the figure. Ultimately, due to this feature,

the boundary between the blue dots and the black dots is decreasing in period t.

Each red line represents a sample path. Each path moves in a north-east direction

in the lattice plane. The solid red line describes the scenario when X1 = 1, X2 = 2, X3 =
0, X4 = 3, and the decision maker stops at period 4. The dashed red line describes the

scenario when X1 = 0, X2 = 1, X3 = 0, X4 = 0, X5 = 1, and the decision maker stops at

period 5.

If t and
∑t

j=1 X j were to be on R+, then we can delineate the boundary to continue

proofreading on the plane of (t,
∑t

j=1 X j). Unless otherwise stated, we refer to this bound-

ary as the optimal stopping rule. Although the optimal stopping decision for proofreading

becomes history dependent, the same results as the original model are retained.

Two key features of the optimal stopping rules are (1) that given any sample path

(or history), the decision maker’s optimal stopping rule is aligned with his/her cost-

disadvantage ratio, and (2) that each heterogeneous committee member’s rule does not

cross another’s rule. Committee member i with a high ci
D i

will always have a weakly

lower boundary in terms of the sum of the detected errors. Since this stopping problem

is monotone, it is natural to restrict our attention to the class of monotone strategies. As

long as everyone uses monotone strategies, it is a weakly undominated strategy to follow

his/her own optimal stopping rule sincerely.
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